DAY EIGHTEEN

Unit Test 4

(Plant Physiology)

- 1 Which of the following is an example of osmosis?
 - (a) Flow of water out of a cell
 - (b) Pumping of solutes into a cell
 - (c) Flow of water between cells
 - (d) Both (a) and (c)
- 2 Organic molecules make up what percentage of the dry weight of a plant?
 - (a) 17%
- (b) 6%
- (c) 67%
- (d) 96%
- 3 Non-cyclic photophosphorylation during photosynthesis
 - (a) generates ATP
- (b) produces NADPH
- (c) Both (a) and (b)
- (d) produces NAD
- 4 The enzymes of EMP are located in
 - (a) cytosol
- (b) cytosol and mitochondria
- (c) lysosomes
- (d) ribosomes
- 5 Vernalisation takes place in response to
 - (a) low light intensity
- (b) high light intensity
- (c) low temperature
- (d) high temperature
- **6** The amount and direction of movement of water in plants can always be predicted by measuring
 - (a) dissolved solutes
- (b) proton gradients
- (c) rainfall
- (d) water potential (ψ_w)
- 7 Which of the following mineral elements plays an important role in biological nitrogen-fixation?
 - (a) Cu
- (b) Mn
- (c) Zn
- (d) Mo
- 8 The end result of the cyclic electron pathway, from PS-I to PS-II during photophosphorylation is
 - (a) evolution of O₂
- (b) evolution of H⁺
- (c) production of ATP
- (d) production of e⁻
- 9 The emitted electrons during photolysis of water are accepted by
 - (a) phycobilins
 - (b) carotene
 - (c) xanthophyll
 - (d) chlorophyll (oxidised P₆₈₀ of PS-II)

- 10 Which of the following statements are true/false?
 - I. The positive hydrostatic pressure is called turgor pressure.
 - II. Wall pressure prevents the increase of protoplasm size.
 - III. Diffusion is more rapid in liquids than in gases.
 - IV. Diffusion of water through a semipermeable membrane is called imbibition.
 - V. Osmosis is the movement of substances, which takes place along a diffusion gradient.
 - (a) I and II are true, while III, IV and V are false
 - (b) I and III are true, while II, IV and V are false
 - (c) I and IV are true, while II, III and V are false
 - (d) I and IV are false, while II, III and IV are true
- 11 Match the following columns.

	Column I		Column II
Α.	Mineral required for synthesis of chlorophyll	1.	Fe
В.	Mineral required for ATP synthesis	2.	Cu
		3.	Mg
		4.	Р

Codes

		Α	Е	3
(0)	1	2	2	1

A B (b) 3, 4 1, 2

(a) 1, 2 3, 4 (c) 3, 4 1, 2

(d) 3 1, 2, 4

- 12 In a germinating seed, when protein is aerobically oxidised, the RQ value will be
 - (a) less than one

(b) more than one

(c) zero

(d) one

13 Match the following columns.

	Column I		Column II
Α.	Shoot apices	1.	Cytokinin
B.	Gibberella fujikuroi	2.	Auxin
C.	Coconut milk	3.	Ethylene
D.	Ripening fruit	4.	ABA
E.	Aged leaves of plants	5.	GA

	Codes B C D E (a) 2 3 4 5 1 (c) 1 2 3 4 5	A B C D E (b) 2 5 1 3 4 (d) 5 4 3 2 1	23	Photo-oxidation of water res molecular oxygen is due to (a) PS-I (c) Both (a) and (b)	culting in the release of (b) PS-II (d) Phycobilins	
14	The last end product of glyd (a) acetyl Co-A (c) phosphoglyceraldehyde	(b) pyruvic acid	24	Floating respiration occurs vare (a) fats and carbohydrate	when respiratory substrates (b) proteins	
15	The most common auxin is (a) GA (c) kinetin	(b) ABA (d) IAA	25	(c) organic acids Each meristem influences o	(d) Both (a) and (b) ther meristems. The	
16	Which of the following is trupotential of a plant cell?	` '		phenomenon is (a) allometry (c) lag phase	(b) growth correction (d) auxetic growth	
17	turgid (b) It becomes lower after th (c) It becomes higher when the cell (d) It is equal to 0.23 MPa Which of the following protes		26	due to pressure difference (c) not affected by temperate	nin a potato tuber is ure and function of the ls ation differences and bulk flow tes ure and pressure	
	roots inhabited by <i>Rhizobiu</i> (a) Leghaemoglobin (c) Nitrate reductase	(b) Plastocyanin (d) Hydrogenase	27	(a) nitrogen, phosphorus and	weight of plant comprises of d potassium	
18	Select the correct statement (a) The photosystem of chlo (b) Photosystem is the react (c) Photosystem energises (d) Photosystem funnels ele	rophyll absorbs solar energy ion centre of chlorophyll electrons	(b) calcium, magnesium and sulphur(c) carbon, nitrogen and hydrogen(d) carbon, hydrogen and oxygen28 Which of the following statements are correct?			
19	which enzyme is not prese system? (a) NADH dehydrogenase (b) Cytochrome- <i>c</i> oxidase (c) FeS proteases (d) Glucose 6- phosphate definitions and the control of the control	nt in electron transport		phosphoglycerate. III. 18 ATP molecules are sy	s catalysed by RuBisCO. ediate compound formed is inthesised during dark cycle. reduce diphosphoglycerate. (b) I, III and IV (d) I, II and III	
20	ABA acts antagonistic to (a) ethylene (c) gibberellic acid	(b) cytokinin (d) IAA	29		(b) NADH and FADH ₂	
21	plant tissue	ter potential (ψ_w) of this it is an open beaker and not	30	(c) ATP Types of plants that come to short photoperiods followed (a) intermediate plants (c) day-neutral plants		
	(b) a positive number set by (c) zero (d) a negative number set b	y the volume of the beaker	31	Which of the following would potential (ψ_w) in plants? (a) Water-attracting matrices		
22	In which one of the following constituent? (a) Idioblast (c) Invertase	g, nitrogen is not a (b) Bacteriochlorophyll (d) Pepsin	32	(c) Dissolved solutes Which of the following is a n (a) Ni (c) P	(d) All of these	

00	AA//			Codes					
JJ	What happens, when chic intensity of light?	prophyll is exposed to high		A B		А	В		
	, ,	(a) Photosynthesis is accelerated				(b) 1,3	2		
	(b) Solarisation and destru	uction of chlorphyll occur		(c) 3 1,2		(d) 2	1, 3		
	(c) O ₂ evolution increases (d) CO ₂ fixation is inhibited		44	Which among the regarding fermed		statements	is incorrect		
34	Rate of respiration is inve	rsely proportional to		(a) It involves be					
	(a) dehydration (c) minerals	(b) tissue injury(d) temperature		(c) It takes plac	e in the pres	sence of oxy	•		
35	A long-day plant flowers of	only when it is exposed to		(d) Its pathway end product		it on the type	e of organisms and		
	(a) red light(b) light more than critical(c) light equal to critical day	ay length	45	Which of the fol	_				
	(d) light less than critical c						ng lower plants.		
36	Compared to a cell with fe a cell containing many ac	ew aquaporin in its membrane, quaporins will		only.	•		ours root formation		
	(a) have a faster rate of os (b) be less turgid			IV. ABA is syn	inesised ca	atabolically	through glycolysis		
	(c) have a faster rate of ac(d) have a lower water pot		Codes						
2-2				(a) I and II (b) II and III	(c) I and II	I (d) III and IV		
3/	Which is essential for root (a) Zn (b) Ca	t hair growth? (c) Mo (d) S	46	Which of the fol water taken up		cribes the fa	te of most of the		
38	Photorespiration does not following?	t occur in which of the		(a) It is used as a hydrogen source in photosynthesis(b) It is lost during transpiration					
	(a) Wheat (c) Cereals	(b) Rice (d) Sugarcane		(c) It makes cel (d) It is used as		possible			
39	Carotenes protect plants	from	47	K, N, Ca, Mg de	eficiency ca	uses			
-	(a) photooxidation	(b) dessication		(a) chlorosis		(b) leaf cu			
	(c) photorespiration	(d) photosynthesis	40	(c) red rust of te			of sugarcane		
40		can be induced to grow tall	48	Calvin cycle do (a) reduction of		ae			
	by using (a) gibberellins	(b) phycobilins		(b) carboxylatio					
	(c) auxins	(d) cytokinins		(c) glycolytic re (d) regeneration					
41	All of the following statem	ents about xylem are correct	40			n conciete c	.f		
	except		49	The electron tra	u iopuit Chidh	(b) FMN	/I		
	(a) xylem conduction occu			(c) FAD		(d) All of the	nese		
	(b) xylem has a lower water(c) xylem conducts materi		50	Which of the fol	lowing is inc	correctly ma	atched?		
12	(d) xylem transports mainl			(a) Explant	_	,	ant part used for		
72	nutrition?	ion coociniai element in piditt		(b) Cytokinin	_	Root initiati			
40	(a) Na (b) Mg	(c) Ca (d) Fe		(c) Somatic er	mbryo —		oduced from a		
43	Match the following colun			(d) Anther cult	ture —	Haploid pla			
	Column I	Column II	51	The greatest pro	onartian of t	he water ta	ken un hy nlante ie		
	A. Increase the rate of photo		31	The greatest proportion of the water taken up by plants is (a) stored in the xylem					
	B. Decrease the rate of photosynthesis				(b) absorbed by central vacuoles during cell elong(c) lost through stomata during transpiration				
		3. Gibberellin		(d) returned to t					

52	The last electron acceptor of ETC during on phosphorylation is (a) cyt-b (b) cyt-a ₃	idative	59	(a) n	okaryote nitochon vacuole		NDH + H	(1	b) m		omes		e in
	(c) H2 (d) CO2		60	Phyto	ochrome	was	isolate	d by					
53	If photosynthesising, green algae are providabelled with an isotope of oxygen (O ¹⁸), lat	=	00	(a) E	Butler <i>et.</i> R Hill		iooiato	(1	,	/ Wer	nt ⁄ick <i>e</i>	et. al	
	showed that all of the following compounds the algae contain ¹⁸ O except (a) PGA (b) RuBP (c) glucose (d) O ₂		61	dista (a) C	t propert nces in a Cohesion Adhesion	a plar		enak	ole it	t to tr	avel	up Ior	ng
54	The carbon dioxide concentration at which exchange is zero, is called	net gaseous		٠,	Both (a) a ce is less	,	,	liquio	d wa	ıter			
	(a) oxygen compensation point(b) carbon dioxide compensation point(c) water compensation point(d) None of the above		62 Choose the correct option regarding the general functions of mineral elements?(a) They are the structural elements of cells(b) They are components of energy										
55	Phytochrome occurs in two forms. In which promotes the germination of seeds of some				They are All of the			that a	activ	ate c	r inhi	ibit en	zymes
	(a) P_{fr} forms (b) P_r forms (c) Both (a) and (b) (d) None of the		63	3 Select the false statement. (a) ATP or NADH is not formed during photorespiration									
56	How does water in the xylem travel to the m the leaves? (a) By osmosis due to the osmotic pressure i (b) By active transport (c) By a pumping mechanism unique to plan	n leaf tissue		 (b) C₄-pathway of photosynthetic CO₂-fixation was fi discovered by Hatch and Slack (c) Photorespiration results in maximum production of (d) In C₄-plants, Phosphoenol Pyruvate (PEP) acts as acceptor 				n of ATP					
57	(d) By a vacuum created within the leaf petio Match the following columns.		64	64 Cyanide inhibits the electron flow between (a) cytochrome-a and cytochrome-a ₃									
37		Oak was II			-ATPase		F ₀ -com	pone	ent				
	Column I	Column II		. ,	NAD and ubiquinor		d cytocl	nrom	e-b				
	A. Constituent of organic biomolecules 1.	Mg ²⁺	65		ene is u		-	11 0111	0 0				
	B. Component of energy 2.	Zn ²⁺	03					omato	oes				
	C. Activators and inhibitors of enzymes 3.	K ⁺ , Na ⁺		(a) retarding ripening of tomatoes(b) hastening of ripening of apples									
	D. Regulators of osmotic potential of cell 4.	C, H, O, N		(c) fastening of ripening of fruits (d) Both (b) and (c)									
	Codes ABCDAB	C D	66		h the fol			nne					
	(a) 4 1 2 3 (b) 1 4	2 3	00		Column I	IOWIII	y colui	11115.		Colu	II		
	(c) 1 4 3 2 (d) 1 3	4 2			(Principle)					(Scie			
58	Match the following columns.			A. I	Mass-flow	hypo	thesis		1.	JC B	ose		
	Column I Column II			B. I	Relay pui	mp the	eory		2.	Stras	burge	r	
	A. Oxygenic photosynthesis 1. Blue-greer	n algan		C. Transpiration pull theory 3. Munch									
				D. I	Pulsatile r	novem	nent the	ory			ewski		
	B. Anoxygenic photosynthesis 2. Angiosperm								5.	Dixor	n and	Jolly	
	3. Photosyntl sulphur ba			Cod (a)	А В	C 5	D 1	(b)	A 3	B 4	C 1	D 5	
	Codes		` ,		5	(d)		4	5	1			
	A B A B (a) 1,2 3 (b) 3 1,2 (c) 1 2,3 (d) 2,3 1		67	roots	th microb of non-l Frankia	egun		plant	s lik	e Alr	nus?		on the

- 68 Select the correct pathway for electron transport during 76 Translocation is a photosynthesis. (a) catabolic process (b) anabolic process (c) passive mechanism (d) ATP dependent process (a) $CO_2 \rightarrow RuBP \rightarrow Glucose - ATP$ (b) $H_2O \rightarrow PS - I \rightarrow PS - II \rightarrow NADPH + H^+$ 77 Which among the following theories is not involved in (c) $H_2O \rightarrow PS - II \rightarrow PS - I \rightarrow NADPH + H^+$ active mineral absorption? (d) $H_2O \rightarrow PS-II \rightarrow PS-I \rightarrow ATP$ (a) Carrier concept theory (b) Ion-exchange theory 69 Pentose Phosphate Pathway (PPP) involves (c) Cytochrome-pump theory (d) Protein lecithin theory (a) generation of NADPH 78 I. Initial CO₂ acceptor. (b) production of ribulose-5-phosphate (c) production of erythrose-4-phosphate II. Extent of photorespiration. (d) All of the above III. Enzyme catalysing reaction that fixes CO₂. IV. The presence of Calvin cycle. 70 Photoperiodism influences V. Leaf anatomy. (a) seed germination (b) vegetative growth Which one does not differ in a C_3 and C_4 - plants? (c) internode elongation (a) I and V (b) Only IV (c) II and III (d) Only II (d) All of the above 79 Which one of the following pairs is incorrectly matched? 71 Transport of organic solutes is supposed to take place (a) Antibiotics Fermentation by pressure flow hypothesis through phloem tissue from (b) Glycolysis Cytosol source to sink. Choose the false statement about (c) ETC Shuttles vascular tissue transport. (d) Complex II **FMN** (a) Phloem transports mainly water and sucrose but other sugars, hormone and amino acids are also transported 80 Who first suggested the presence of growth regulatory (b) Water enters into the sieve tube by the process of chemicals in plants? (a) Went (b) Sachs (c) Water and solute move through the sieve tube along the (c) Darwin (d) Paal pressure gradient 81 Difference in the hydrostatic pressure between leaf and (d) Sieve tube in the source have a low turgor pressure storage organs promotes (pressure potential) (a) ascent of sap (b) storage of water 72 Donnan equilibrium is associated with (c) translocation (d) photorespiration (a) transport of non-diffusible ions 82 The mode of nutrition of Azotobacter and Beijerinckia is (b) transport of diffusible ions (b) saprotrophic (a) chemoautotrophic (c) Both (a) and (b) (c) photoautotrophic (d) None of these (d) None of the above 83 I. It is the characteristic of C_4 -plants 73 A scientist disrupted the chloroplast and separated the stroma from lamella. For fixing CO2, he supplied stroma II. It is the characteristic of C₃-plants III. It occurs in chloroplast. with IV. It occurs in daytime I. ATP II. NADPH III. Glucose V. It occurs in night. Select the correct option. (a) I and III (b) III and II Select the correct options in relation to photorespiration. (d) I, II and III (c) I and II Correct option Incorrect option 74 Wavelength of PAR is I, IV II, III, V (a) (a) 340-450 nm (b) 400-700 nm II, III, IV I,V (d) 450-950 nm (c) 500-600 nm 1. 11. 111 IV. V (c) 75 I. Indole-3-acetic acid IV, V (d) 1, 11, 111
 - IV. Naphthalene acetic acid the process of fermentation? (a) Pyruvic acid → Acetaldehyde → Acetic acid Above are the examples of which plant growth hormone?

II. 2-4, dichlorophenoxy acetic acid

(b) Cytokinin

(d) Gibberellin

III. 6 Indole butyric acid

(a) Auxin

(c) Ethylene

(b) Glucose → Pyruvate

84 Which one of the following reactions correctly explains

- (c) Succinate → Fumarate
- (d) None of the above

85 Match the following columns.

	Column I		Column II
Α.	Auxin	1.	Auxins
В.	Abscisic acid	2.	Breaking dormancy
C.	Parthenocarpy	3.	Cell division
D.	Gibberellin	4.	Apical meristem
		5.	Leaves and fruits

Codes

	Α	В	С	D		Α	В	С	D
(a)	4	5	1	2	(b)	1	2	5	4
(c)	4	2	1	3	(d)	3	2	4	5

- 86 Passive absorption of mineral salt is not
 - (a) osmosis
- (b) diffusion
- (c) Donnan equilibrium
- (d) ion exchange
- 87 In reductive amination,
 - (a) ammonia combines with amino acid glutamate
 - (b) ammonia combines with a keto acid
 - (c) transfer of amino groups from an amino to keto group of a keto acid
 - (d) None of the above
- 88 Match the following columns.

	Column I		Column II
Α.	EMP pathway	1.	Nitrosomonas
В.	Amphibolic	2.	Ammonification
C.	Nitrification	3.	Pseudomonas
D.	Denitrification	4.	Glycolysis
		5.	Respiratory pathway

Codes

	Α	В	С	D
(a)	1	2	3	4
(b)	2	3	4	5
(c)	3	4	5	1
(d)	4	5	1	3

- 89 Photosynthesis and respiration are similar because
 - I. in eukaryotes, both processes occur in specialised
 - II. ATP synthesis in both is explained by chemiosmotic theory.
 - III. Both use ETC.

Select the correct option.

- (a) I and II
- (b) II and III
- (c) I and III
- (d) All of these

90 Match the following columns.

(Column I		Column II
A. <i>E</i>	Bryophyllum	1.	Short-long day plants
B. V	Vheat	2.	Leaf apex of Gloriosa
C. 1	Γhigmotropism	3.	Peduncles of tulip
D. 1	Thermotropism	4.	Long-short day plant
		5.	Equisetum

Codes

	Α	В	С	D
(a)	2	1	5	4
(b)	4	1	2	3
(c)	5	4	2	1
(d)	3	2	4	1

ANSWERS

1 (d)	2 (d)	3 (c)	4 (a)	5 (c)	6 (d)	7 (d)	8 (c)	9 (d)	10 (a)
11 (d)	12 (a)	13 (b)	14 (b)	15 (d)	16 (a)	17 (a)	18 (a)	19 (d)	20 (c)
21 (c)	22 (a)	23 (b)	24 (a)	25 (b)	26 (b)	27 (d)	28 (c)	29 (a)	30 (b)
31 (d)	32 (a)	33 (b)	34 (a)	35 (b)	36 (a)	37 (b)	38 (d)	39 (a)	40 (a)
41 (d)	42 (a)	43 (b)	44 (c)	45 (c)	46 (b)	47 (a)	48 (c)	49 (d)	50 (b)
51 (c)	52 (b)	53 (d)	54 (b)	55 (a)	56 (a)	57 (a)	58 (a)	59 (b)	60 (a)
61 (c)	62 (d)	63 (c)	64 (a)	65 (b)	66 (d)	67 (a)	68 (c)	69 (d)	70 (d)
71 (d)	72 (a)	73 (c)	74 (b)	75 (a)	76 (d)	77 (b)	78 (b)	79 (d)	80 (a)
81 (c)	82 (b)	83 (b)	84 (a)	85 (a)	86 (a)	87 (b)	88 (d)	89 (b)	90 (b)