
NEET UG (2024) Physics Quiz-17

8.

9.

SECTION - A

Which of the following graph is correct:
 n = magnitude of measurement & u = unit of measurement.

- 2. Choose the wrong statement:
 - (1) A dimensionally correct equation may be correct
 - (2) A dimensionally incorrect equation must be incorrect
 - (3) A dimensionally correct equation may be incorrect
 - (4) A dimensionally incorrect equation may be correct
- 3. Suppose refractive index μ is given as:

$$\mu = A + \frac{B}{\lambda^2}$$

Where A and B are constants and λ is the wavelength, then dimensions of B are same as that of:

- (1) Wavelength (2) Volume
- (3) Pressure (4) Area

4. $\alpha = \frac{F}{v^2} \sin(\beta t)$ (where v = velocity, F = force, t = time)

Find the dimension of α and β respectively

(1) $M^1 L^{-1} T^0, M^1 L^{-1} T^0$

(2) $M^{1}L^{1}T^{-2}, M^{1}L^{-1}T^{0}$

(3)
$$M^{-1}L^{-1}T^{-2}$$
, $M^{1}L^{1}T^{-2}$

- (4) $M^{1}L^{-1}T^{0}, M^{0}L^{0}T^{-1}$
- 5. Which of the following have unit but does not have dimension?

(1) Strain (2) Speed

- (3) Angle (4) Height
- 6. Vander Waal's gas equation is

$$\left(P + \frac{a}{V^2}\right)(V-b) = RT$$
. The dimensions of constant

a as given above are

- (1) $M L^4 T^{-2}$ (2) $M L^5 T^{-2}$
- (3) $M L^3 T^{-2}$ (4) $M L^2 T^{-2}$

- 7. If a particle moves from point *P* (2, 3, 5) to point *Q* (3, 4, 5). Its displacement vector be
 - (1) $\hat{i} + \hat{j} + 10\hat{k}$ (2) $\hat{i} + \hat{j} + 5\hat{k}$ (2) $\hat{i} + \hat{j} + 5\hat{k}$
 - (3) $\hat{i} + \hat{j}$ (4) $2\hat{i} + 4\hat{j} + 6\hat{k}$

The angles which a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ make with *X*, *Y* and *Z* axes respectively are

- (1) $60^{\circ}, 60^{\circ}, 60^{\circ}$ (2) $45^{\circ}, 45^{\circ}, 45^{\circ}$
- (3) $60^{\circ}, 60^{\circ}, 45^{\circ}$ (4) $45^{\circ}, 45^{\circ}, 60^{\circ}$
- If $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$, then the angle between \vec{A} and \vec{B} is
 - (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$
 - (3) π (4) $\frac{\pi}{4}$

10. If a vector \vec{P} making angles α , β and γ respectively with *X*, *Y* and *Z* axes respectively.

- Then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
- (3) 2 (4) 3

11. The angle between the two vectors $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be

- (1) 90°
- (2) 0°
- (3) 60°
- (4) 45°

12. The unit vector along $\hat{i} - 2\hat{j}$ is :

- (1) $\frac{\hat{i} 2\hat{j}}{\sqrt{5}}$ (2) $\hat{i} + \hat{j}$ (3) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (4) $\frac{\hat{i} - \hat{j}}{\sqrt{5}}$
- 13. If a unit vector is represented by $0.3\hat{i} 0.4\hat{j} + c\hat{k}$, then the value of 'c' is :
 - (1) $\sqrt{0.75}$
 - (2) $\sqrt{0.25}$
 - (3) $\sqrt{0.01}$
 - (4) $\sqrt{0.39}$
- 14. Forces 7 N, 24 N, 25 N act at a point in mutually perpendicular directions. The magnitude of the resultant force is :
 - (1) 19 N (2) 13 N
 - (3) 26 N (4) $25\sqrt{2} N$

15. A physical quantity A is related to four observable *a*, *b*, *c* and *d* as follows, $A = \frac{a^2 b^3}{c \sqrt{d}}$, the percentage errors of measurement in a, b, c and d are 1%, 3%, 2% and 2% respectively. What is the percentage error in the quantity A (1) 12% (2) 7%(3) 5% (4) 14% If $\vec{P} \cdot \vec{Q} = -PQ$, then angle between \vec{P} and \vec{Q} is : 16. (1) 0° (2) 180° (3) 45° (4) 60° 17. A dimensionless quantity (1) Never has a unit (2) Always has a unit (3) May have a unit (4) Does not exist 18. A unitless quantity (1) Does not exist (2) Always has a nonzero dimension (3) Never has a nonzero dimension (4) May have a nonzero dimension If S = 1/3 ft³, f has the dimensions of 19. (S = distance, t = time)(2) $[M^{1}L^{1}T^{-3}]$ (1) $[M^0L^{-1}T^3]$ (3) $[M^0L^1T^{-3}]$ (4) $[M^0L^{-1}T^{-3}]$ For $e^{(at+3)}$, the dimensions of *a* is: 20. (1) $M^0L^0T^0$ (2) $M^0 L^0 T^1$ (3) $M^0L^0T^{-1}$ (4) None of these 21. The velocity *u* of particles is given in terms of time t by the equation $u = at + \frac{b}{t^2 + c}$. The dimension of *a*, *b* and *c* are: (1) L^2 , T, LT^2 (2) LT^2 , LT, L(3) LT^{-2} , LT, T^{2} (4) L, LT, T^2 The angle between the vectors \vec{A} and \vec{B} is θ . The 22. value of the triple product $\vec{A} \cdot (\vec{B} \times \vec{A})$ is (1) A^2B (2) Zero (3) $A^2B\sin\theta$ (4) $A^2B\cos\theta$ If two vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $-4\hat{i}-6\hat{j}-\lambda\hat{k}$ are 23. parallel to each other then value of λ be (1) 0(2) -2(3) 3 (4) 4 If velocity v, acceleration A and force F are 24. chosen as fundamental quantities, then the

dimensional formula of angular momentum in terms of v, A and F would be (1) $\pi - 1$ $r 3 4^{-2}$

(1)	$FA^{-1}v$	(2)	$Fv^{3}A^{2}$
(3)	Fv^2A^{-1}	(4)	$F^2 v^2 A^{-1}$

- 25. In the following list, the only pair which have different dimensions, is
 - (1) Linear momentum and moment of a force
 - (2) Planck's constant and angular momentum
 - (3) Pressure and modulus of elasticity
 - (4) Torque and potential energy

26. In an clockwise system

- (1) $\hat{j} \times \hat{k} = \hat{i}$ (2) $\hat{i} \cdot \hat{i} = 0$ (3) $\hat{j} \times \hat{j} = 1$ (4) $\hat{k} \cdot \hat{j} = 1$
- 27. The linear velocity of a rotating body is given by $\vec{v} = \vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body is $\vec{\omega} = \hat{i} - 2\hat{j} + 2\hat{k}$ and the radius vector $\vec{r} = 4\hat{j} - 3\hat{k}$, then |v| is
 - (1) $\sqrt{29}$ units (2) $\sqrt{31}$ units
 - (3) $\sqrt{37}$ units (4) $\sqrt{41}$ units
- Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the relation 28. $\vec{a}.\vec{b}=0$ and $\vec{a}.\vec{c}=0$. The vector \vec{a} is parallel to
 - (1) \vec{b} (2) \vec{c} (3) $\vec{b}.\vec{c}$ (4) $\vec{b} \times \vec{c}$

The diagonals of a parallelogram are $2\hat{i}$ and $2\hat{j}$. 29. What is the area of the parallelogram

- (1) 0.5 units (2) 1 unit
- (3) 2 units (4) 4 units

30. What is the unit vector perpendicular to the following vectors $2\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 3\hat{j} + 2\hat{k}$

(1)
$$\frac{\hat{i} + 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$$
 (2) $\frac{\hat{i} - 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$
(3) $\frac{\hat{i} - 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$ (4) $\frac{\hat{i} + 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$

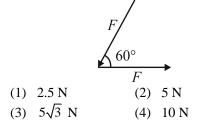
31. cos 150°

(1)
$$\frac{1}{2}$$
 (2) $-\frac{1}{2}$
(3) $\frac{\sqrt{3}}{2}$ (4) $-\frac{\sqrt{3}}{2}$


If $\sin \theta = \cos \theta$, then the value of θ will be: 32. (1) 0° (2) 45°

> (3) 30° (4) 90°

Given that, $\sin A = \frac{1}{2}$ and $\cos B = \frac{1}{\sqrt{2}}$ then value 33. of (A+B) will be:


- (1) 30° (2) 45°
- (3) 75° (4) 15°

- **34.** What is the value of linear velocity, if $\vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k}$ and $\vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}$ (1) $6\hat{i} - 2\hat{j} + 3\hat{k}$ (2) $6\hat{i} - 2\hat{j} + 8\hat{k}$ (3) $4\hat{i} - 13\hat{j} + 6\hat{k}$ (4) $-18\hat{i} - 13\hat{j} + 2\hat{k}$
- **35.** Plot the graph of given equation, $Y = \sqrt{3}X + 5$

SECTION - B

- 36. If a vector $2\hat{i} + 3\hat{j} + 8\hat{k}$ is perpendicular to the vector $4\hat{i} 4\hat{j} + \alpha\hat{k}$, then the value of α is
 - (1) -1 (2) $\frac{1}{2}$ (3) $-\frac{1}{2}$ (4) 1
- **37.** If $|\vec{A} \times \vec{B}| = \sqrt{3}\vec{A}.\vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is:
 - (1) $\left(A^{2} + B^{2} + \frac{AB}{\sqrt{3}}\right)^{1/2}$ (2) A + B(3) $\left(A^{2} + B^{2} + \sqrt{3}AB\right)^{1/2}$ (4) $\left(A^{2} + B^{2} + AB\right)^{1/2}$
- **38.** If the magnitudes of vectors \vec{A} , \vec{B} and \vec{C} are 12, 5, and 13 units respectively and $\vec{A} + \vec{B} = \vec{C}$, the angle between vectors *A* and *B* is:
 - (1) 0 (2) π (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$
- **39.** Two forces, each numerically equal to 5 N, are acting as shown in the figure. Then the resultant is

Unit of power is

40.

- (1) Kilowatt (2) Kilowatt-hour
- (3) Dyne (4) Joule
- 41. The dimensional formula for impulse is
 - (1) MLT^{-2} (2) MLT^{-1}
 - (3) ML^2T^{-1} (4) M^2LT^{-1}
- **42.** The dimensional formula for Planck's constant (*h*) is

(1)
$$ML^{-2}T^{-3}$$
 (2) $ML^{2}T^{-2}$
(3) $ML^{2}T^{-1}$ (4) $ML^{-2}T^{-2}$

- **43.** The dimensional formula for Boltzmann's constant is
 - (1) $[ML^2T^{-2}\theta^{-1}]$ (2) $[ML^2T^{-2}]$
 - (3) $[ML^0T^{-2}\theta^{-1}]$ (4) $[ML^{-2}T^{-1}\theta^{-1}]$
- 44. Let $\vec{C} = \vec{A} + \vec{B}$ then
 - (1) $\left| \vec{C} \right|$ is always greater than $\left| \vec{A} \right|$
 - (2) It is possible to have $|\vec{C}| < |\vec{A}|$ and $|\vec{C}| < |\vec{B}|$
 - (3) C is always equal to A + B
 - (4) *C* is never equal to A + B
- **45.** A force $\vec{F} = (5\hat{i} + 3\hat{j})$ Newton is applied over a particle which displaces it from its origin to the point $\vec{r} = (2\hat{i} 1\hat{j})$ metres. The work done on the particle is
- **46.** If the sum of two unit vectors is a unit vector, then magnitude of difference is
 - (1) $\sqrt{2}$ (2) $\sqrt{3}$
 - (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{5}$
- 47. The vectors from origin to the points A and B are $\vec{A} = 3\hat{i} - 6j + 2k$ and $\vec{B} = 2\hat{i} + \hat{j} - 2\hat{k}$ respectively. The area of the triangle *OAB* be
 - (1) $\frac{5}{2}\sqrt{17}$ sq. units (2) $\frac{2}{5}\sqrt{17}$ sq. units (3) $\frac{3}{5}\sqrt{17}$ sq. units (4) $\frac{5}{3}\sqrt{17}$ sq. units

48. Find the resultant of following vectors

$$|\vec{B}| = 5$$

$$|\vec{A}| = 10$$

$$|\vec{C}| = 11$$
(1) 8 (2) 6
(3) 10 (4) 20

49. The frequency of vibration f of a mass msuspended from a spring of spring constant K is given by a relation of this type $f = Cm^x K^y$; where C is a dimensionless quantity. The value of x and y are

(1)
$$x = \frac{1}{2}, y = \frac{1}{2}$$
 (2) $x = -\frac{1}{2}, y = -\frac{1}{2}$
(3) $x = \frac{1}{2}, y = -\frac{1}{2}$ (4) $x = -\frac{1}{2}, y = \frac{1}{2}$

- 50. The velocity of water waves v may depend upon their wavelength λ , the density of water $\rho\,$ and the acceleration due to gravity g . The method of dimensions gives the relation between these quantities as

 - (1) $v^2 \propto g$ (2) $v^2 \propto g\lambda\rho$ (3) $v^2 \propto g\lambda$ (3) $v^2 \propto g^{-1}\lambda^{-3}$

Solution

- 1. (4) Relation between unit and magnitude (nu = constant).
- 2. (4) A dimensionally incorrect equation may be correct.
 - (4) $\lambda = \text{wavelength}$ $[\lambda] = L$ $\mu = (A) + \left(\frac{B}{\lambda^2}\right) \Rightarrow \left[\frac{B}{\lambda^2}\right] = M^0 L^0 T^0$ $\boxed{[B] = M^0 L^2 T^0}$ $B = \text{S.I. unit (m^2)}$

4. (4)

3.

$$\alpha = \frac{F}{v^{2}} (\sin(\beta t))$$

dimensionless
dimensionless
So
$$\alpha = \frac{[F]}{[v^{2}]} = \frac{[M^{1}L^{1}T^{-2}]}{[L^{1}T^{-1}]^{2}} = M^{1}L^{-1}T^{0}$$
$$\beta = \frac{1}{[t]} = \frac{1}{[T]} = M^{0}L^{0}T^{-1}$$

5. (3)

$$\theta = \frac{l}{r} = \frac{[L]}{[L]} = [M^{\circ}L^{\circ}T^{\circ}]$$

and the S.I unit of angle is radian

6. (2)

 $P \rightarrow$ Pressure $V \rightarrow$ Volume $T \rightarrow$ Temperature $R \rightarrow$ const $P = {}^{a} \rightarrow M I^{-1} T$

$$P = \frac{a}{V^2} \Rightarrow ML^{-1}T^{-2} = \frac{a}{(L^3)^2}$$
$$a = ML^{-1}T^{-2}L^6 = [M^1L^5T^{-2}]$$

7. (3)

8.

Displacement vector $\vec{r} = \Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k}$ = $(3-2)\hat{i} + (4-3)\hat{j} + (5-5)\hat{k} = \hat{i} + \hat{j}$

(3) $\vec{R} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}$ Comparing the given vector $R = R_x\hat{i} + R_y\hat{j} + R_z\hat{k}$ $R_x = 1, R_y = 1, R_z = \sqrt{2}$ and $|\vec{R}| = \sqrt{R_x^2 + R_y^2 + R_z^2} = 2$

$$\cos \alpha = \frac{R_x}{R} = \frac{1}{2} \Longrightarrow \alpha = 60^{\circ}$$
$$\cos \beta = \frac{R_y}{R} = \frac{1}{2} \Longrightarrow \beta = 60^{\circ}$$
$$\cos \gamma = \frac{R_z}{R} = \frac{1}{\sqrt{2}} \Longrightarrow \gamma = 45^{\circ}$$

9. (3)

We know that $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$ because the angle between these two is always 90°. But if the angle between \vec{A} and \vec{B} is 0 or π . Then $\vec{A} \times \vec{B} = \vec{B} \times \vec{A} = 0$.

10. (3)

$$\sin^2 \alpha + \sin^2 \beta + \sin \gamma$$

= 1 - cos² \alpha + 1 - cos² \beta + 1 - cos² \beta
= 3 - (cos² \alpha + cos² \beta + cos² \beta) = 3 - 1 = 2

11. (1)

$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|A||B|} = \frac{\left(3\hat{i} + 4\hat{j} + 5\hat{k}\right)\left(3\hat{i} + 4\hat{j} - 5\hat{k}\right)}{\sqrt{9 + 16 + 25}\sqrt{9 + 16 + 25}}$$
$$= \frac{9 + 16 - 25}{50} = 0$$
$$\Rightarrow \cos \theta = 0, \ \therefore \theta = 90^{\circ}$$

12. (1)

- 13. (1)
- 14. (4)

15. (4)
Percentage error in A
$$=\left(2\times 1+3\times 3+1\times 2+\frac{1}{2}\times 2\right)\%=14\%$$

- **16.** (2)
- 17. (3)
- 18. (3)
- **19.** (3)
- 20. (3)

with

21. (3) $[a] = [LT^{-2}]$ [b] = [LT] $[c] = [T^{2}]$ $[u] = [LT^{-1}]$ $[a][T] = [LT^{-1}]$ $[a] = [LT^{-2}]$ 22. (2)

23.

(2) Let $\vec{A} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{B} = -4\hat{i} - 6\hat{j} - \lambda\hat{k}$ \vec{A} and \vec{B} are parallel to each other $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$ *i.e.* $\frac{2}{-4} = \frac{3}{-6} = \frac{-1}{-\lambda} \Rightarrow \lambda = -2$.

24. (2)

 $L \propto v^{x} A^{y} F^{z} \implies L = kv^{x} A^{y} F^{z}$ Putting the dimensions in the above relation $[ML^{2}T^{-1}] = k[LT^{-1}]^{x}[LT^{-2}]^{y}[MLT^{-2}]^{z}$ $\implies [ML^{2}T^{-1}] = k[M^{z}L^{x+y+z}T^{-x-2y-2z}]$ Comparing the powers of M, L and T $z=1 \qquad \dots(i)$ $x+y+z=2 \qquad \dots(ii)$ $-x-2y-2z=-1 \qquad \dots(iii)$ On solving (i), (ii) and (iii) x=3, y=-2, z=1So dimension of L in terms of v, A and f $[L] = [Fv^{3}A^{-2}]$

25. (1)

Linear momentum = Mass × Velocity = $[MLT^{-1}]$ Moment of a force = Force × Distance = $[ML^2T^{-2}]$

26. (1)

27.

(1) $\vec{v} = \vec{\omega} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 0 & 4 & -3 \end{vmatrix} = \hat{i}(6-8) - \hat{j}(-3) + 4\hat{k}$ $-2\vec{i} + 3\vec{j} + 4\vec{k}$ $|\vec{v}| = \sqrt{(-2)^2 + (3)^2 + 4^2} = \sqrt{29} unit$

28. (4)

 $\vec{a}.\vec{b} = 0$ *i.e.* \vec{a} and \vec{b} will be perpendicular to each other

 $\vec{a}.\vec{c} = 0$ *i.e.* \vec{a} and \vec{c} will be perpendicular to each other

 $\vec{b} \times \vec{c}$ will be a vector perpendicular to both \vec{b} and \vec{c}

So, \vec{a} is parallel to $\vec{b} \times \vec{c}$

29. (3)

Area
$$= \frac{|2\hat{i} \times 2\hat{j}|}{2} = \frac{|4\hat{k}|}{2} = 2$$
 unit

$$\vec{B} \quad i - j + k$$

$$\vec{C} = \vec{A} \times \vec{B} = (2\hat{i} + 2\hat{j} - \hat{k}) \times (6\hat{i} - 3\hat{j} + 2\hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & -3 & 2 \end{vmatrix} = \hat{i} - 10\hat{j} - 18\hat{k}$$
Unit vector perpendicular to both \vec{A} and \vec{B}

$$= \frac{\hat{i} - 10\hat{j} - 18\hat{k}}{\sqrt{1^2 + 10^2 + 18^2}} = \frac{\hat{i} - 10\hat{j} - 18\hat{k}}{5\sqrt{17}}$$
31. (4)
32. (2)
33. (3)
34. (4)
$$\vec{v} = \vec{\omega} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} = -18\hat{i} - 13\hat{j} + 2\hat{k}$$
35. (3)
36. (2)
37. (4)
$$|\vec{A} \times \vec{B}| = \sqrt{3}\vec{A}\vec{B}$$
AB sin $\theta = \sqrt{3}AB \cos\theta$
tan $\theta = \sqrt{3}$
 $\theta = 60^\circ$, then
$$R = (A^2 + B^2 + 2AB \cos 60^\circ)^{1/2}$$

$$= (A^2 + B^2 + AB)^{1/2}$$
38. (3)
$$\vec{C} = \vec{A} + \vec{B}$$

$$|\vec{C}| = |\vec{A} + \vec{B}|$$

$$C^2 = A^2 + B^2 + 2AB \cos\theta$$

$$13^2 = 12^2 + 5^2 + 2 \times 12 \times 5 \cos\theta$$

$$16\theta = 144 + 25 + 120 \cos\theta$$

$$\theta = \frac{\pi}{2}$$

39. (2)

40. (1)

41. (2) Impulse = Force × Time = $[MLT^{-2}][T] = [MLT^{-1}]$

42. (3)

$$E = hv \Rightarrow [ML^2T^{-2}] = [h][T^{-1}] \Rightarrow [h] = [ML^2T^{-1}]$$

43. (1)
$$k = \left[\frac{R}{N}\right] = [ML^2T^{-2}\theta^{-1}]$$

45. (3) $W = \vec{F} \cdot \vec{r} = (5\hat{i} + 3\hat{j})(2\hat{i} - \hat{j}) = 10 - 3 = 7J.$

46. (2)

Let n_1 and n_2 are the two unit vectors, then the sum is

$$\vec{n}_s = n_1 + n_2$$
 or $n_s^2 = n_1^2 + n_2^2 + 2n_1n_2\cos\theta$

Since it is given that n_s is also a unit vector, therefore

$$1 = 1 + 1 + 2\cos\theta \Longrightarrow \cos\theta = -\frac{1}{2}$$
 : $\theta = 120^{\circ}$

Now the difference vector is

$$n_d = n_1 - n_2 \text{ or } n_d^2 = n_1^2 + n_2^2 - 2n_1 n_2 \cos \theta$$

= 1 + 1 - 2 \cos 120°
$$\therefore n_d^2 = 2 - 2\left(-\frac{1}{2}\right) = 2 + 1 = 3$$
$$\Rightarrow n_d = \sqrt{3}$$

47. (1)

Given
$$\overrightarrow{OA} = \vec{a} = 3\hat{i} - 6j + 2k$$
 and
 $\overrightarrow{OB} = \vec{b} = 2\hat{i} + j - 2k$
 $\therefore (\vec{a} \times \vec{b}) = \begin{vmatrix} \hat{i} & j & k \\ 3 & -6 & 2 \\ 2 & 1 & -2 \end{vmatrix}$
 $= (12 - 2)\hat{i} + (4 + 6)j + (3 + 12)k$
 $= 10\hat{i} + 10j + 15k \implies |\vec{a} \times \vec{b}| = \sqrt{10^2 + 10^2 + 15^2}$
 $= \sqrt{425} = 5\sqrt{17}$
Area of $\triangle OAB = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{5\sqrt{17}}{2}$ sq. units

48. (3)

49. (4)

By putting the dimensions of each quantity both the sides we get $[T^{-1}] = [M]^x [MT^{-2}]^y$ Now, comparing the dimensions of quantities in both sides we get x + y = 0 and 2y = 1 \therefore $x = -\frac{1}{2}, y = \frac{1}{2}$

50. (3)

Let $v = k g^{y} \lambda^{z} \rho^{\delta}$. Now by substituting the dimensions of each quantities and equating the powers of *M*, *L* and *T* we get $\delta = 0$ and $y = \frac{1}{2}$, $z = \frac{1}{2}$.