SECTION - A

At a given temperature, total vapour pressure in **51.** torr of a mixture of volatile components A and B is given by

$$P = 120 - 75 X_{B}$$

hence, vapour pressure of pure A and B respectively (in torr) are:

- (1) 120, 75
- (2) 120, 195
- (3) 120, 45
- (4) 75, 45
- **52.** Relative lowering in vapour pressure of a solution containing 1 mole K₂SO₄ in 54 g H₂O is:

(K₂SO₄ is 100% ionised)

- (3) $\frac{3}{4}$
- 53. A 0.2 molar aqueous solution of a weak acid (HX) is 20% ionised. The freezing point of the solution is:

 $(K_f \text{ of } H_2O = 1.86 \text{ kg mol}^{-1} \text{ K})$

- $(1) 0.45^{\circ}C$
- $(2) 0.90^{\circ}C$
- $(3) 0.31^{\circ}C$
- $(4) 0.53^{\circ}C$
- **54.** Which one of the following pairs of solution can we expect to be isotonic at the same temperature?
 - (1) 0.1 M urea and 0.1 M NaCl
 - (2) $0.1 \text{ M} \text{urea and } 0.1 \text{ M} \text{MgCl}_2$
 - (3) $0.1 \text{ M} \text{Na}_2\text{SO}_4 \text{ and } 0.1 \text{ M} \text{NaCl}$
 - (4) $0.1 \text{ M} \text{Na}_2 \text{SO}_4 \text{ and } 0.1 \text{ M} \text{Ca}(\text{NO}_3)_2$
- 55. Which pair from the following will not form an ideal solution:
 - (1) $CCl_4 + SiCl_4$
- (2) $H_2O + C_4H_9OH$
- (3) $C_2H_5Br + C_2H_5I$ (4) $C_6H_{14} + C_7H_{16}$
- **56.** The osmotic pressure of decimolar solution of urea at 27°C is:
 - (1) 3.40 atm
- (2) 1.25 atm
- (3) 2.46 atm
- (4) 5.0 atm

- 57. Which of the following solution will have least vapour pressure?
 - (1) 0.1 M BaCl₂
 - (2) 0.1 M urea
 - (3) 0.1 M Na₂SO₄
 - (4) 0.1 M Na₃PO₄
- **58.** The molarity of H₂SO₄ solution, which has a density 1.84 g/cc at 35°C and contains 98% by weight is:
 - (1) 1.84 M
- (2) 18.4 M
- (3) 20.6 M
- (4) 24.5 M
- 59. Significant figures in 0.00051 are
 - (1) 5

(2)

(3) 2 (4) 4

3

- If an element Z exist in two isotopic form Z^{50} and **60.** Z^{52} The average atomic mass of Z is 51.7. Calculate the abundance of each isotopic forms
 - $Z^{50}(15\%), Z^{52}(85\%)$ (1)
 - Z^{50} (85%), Z^{52} (15%) (2)
 - $Z^{50}(5\%), Z^{52}(95\%)$ (3)
 - $Z^{50}(95\%), Z^{52}(5\%)$ (4)
- 61. The number of oxygen atoms in 24.9 g of $CuSO_4.5H_2O$ is (molar mass of Cu = 63 g mol⁻¹)
 - 2.41×10^{24} (1)
- 3.01×10^{24} (2)
- 5.42×10^{23} (3)
- 5.42×10^{24} **(4)**
- **62.** What percentage of oxygen is present in the compound CaCO₃.3Ca₃(PO₄)₂?
 - 23.3% (1)
- 45.36% (2)
- 41.94% (3)
- (4) 17.08%
- 63. 2g of O₂ at NTP occupies the volume
 - 1.4 L (1)
- 2.8 L (2)
- (3) 11.4 L
- (4) 3.2 L

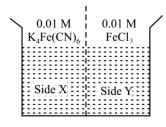
64.	The number of electron in 3.1 mg NO_3^- is:-				73.	Dissolving 120 g of urea (mol. wt. 60) in 1000 g	
	(1) 32 (2) 1.6×10^{-3}			1.6×10^{-3}		of water gave a solution of density 1.15 g/ml. The molarity of the solution is	
	(3)	9.6×10^{20}	(4)	9.6×10^{23}		(1) 1.78 M (2) 2.00 M	
						(3) 2.05 M (4) 2.22 M	
65.	The number of hydrogen atoms presents in 25.6 g					(3) 2.03 141 (4) 2.22 141	
	of sucrose (C ₁₂ H ₂₂ O ₁₁) which has a molar mass of				74.	For the reaction	
	342.3 g is:					$7A + 13B + 15C \rightarrow 17P$	
	(1)	22×10^{23}	(2)	9.91×10^{23}		If 15 moles of A, 26 mole of B and 30.5 moles of	
	(3)	11×10^{23}	(4)	44×10^{23}		C are taken initially, then limiting reactant is	
						(1) A (2) B	
66.	1 mol of CH ₄ contains					(3) C (4) none of these	
	(1) 6.02×10^{23} atoms of H				75.	Which of the following is a temperature	
	(2) 4 g atom of Hydrogen				15.	Which of the following is a temperature independent concentration term?	
	(3) 1.81×10^{23} molecules of CH ₄					(1) Molality	
	(4) $3.0 g$ of carbon					(2) Mole fraction	
						(3) Both (1) and (2)	
67.	Calculate number of neutrons present in 20×10^{25}					(4) Molarity	
	atoms of oxygen (₈ O ¹⁷):					•	
	Given: $N_A = 6 \times 10^{23}$				76.	The weight of lime obtained by heating 200 kg of	
	(1)	180×10^{25}	(2)	1600		95% pure lime stone is:	
	(3)	$1800 N_A$	(4)	$3200N_A$		(1) 98.4 kg (2) 106.4 kg	
						(3) 112.8 kg (4) 122.6 kg	
68.	The mass of oxygen in 3.6 mol of water is				77.	The molality of a solution of urea in acetic acid, if	
	(1)	115.2 g	(2)	57.6 g	//-	mole fraction of urea in the solution is 0.5, is:	
	(3)	28.8 g	(4)	18.4 g			
						(1) $\frac{100}{3}$ m (2) $\frac{50}{3}$ m	
69.	A compound contains 11.99% N, 13.70% O,						
	9.25% B and 65.06% F. Its empirical formula					(3) $\frac{40}{3}$ m (4) $\frac{25}{3}$ m	
	(molar mass of B is 10.8 g mol ⁻¹)					3 3	
	(1)	NOBF ₂	(2)	NOBF ₄	78.	The crystalline salt Na ₂ SO ₄ .xH ₂ O on heating loses	
70	(3)	N_2OF_2	(4)	NO_2F_2		55.9% of its weight. The formula of the crystalline	
	Hoomoolohin contains 0.220/ -f : 1 11					salt is	
70.	Haemoglobin contains 0.33% of iron by weight.					(1) Na2SO4.5H2O	
	The molecular weight of haemoglobin is approximately 67200. The number of iron atoms					(2) Na2SO4.7H2O	
	(at. wt. of Fe = 56) present in one molecule of					(3) Na ₂ SO ₄ .2H ₂ O	
	haemoglobin is					(4) $Na_2SO_4.10H_2O$	
	(1)	6	(2)	1	79.	Calculate the molarity of NaOH in the solution	
	(3)	2	(4)	4	17.	prepared by dissolving its 4 g in enough water to	
						form 500 ml of the solution.	
71.	5 mol of VO and 6 mol of Fe ₂ O ₃ are allowed to					(1) 0.2 M	
	react completely according to the reaction					(2) 0.4 M	
	$VO + Fe_2O_3 \rightarrow FeO + V_2O_5$					(3) 0.02 M	
	The number of moles of V_2O_5 formed is:					(4) 0.04 M	
	(1) (3)	6 3	(2) (4)	2 5	80.	The molarity of aqueous NaCl solution which	
	(3)	3	(4)	3	ou.		
72.	Number of Ca ⁺² and Cl ⁻ ion in 111 g of anhydrous					contains 5.85 g of NaCl in 500 ml solution is:	
	CaCl ₂ are-					(1) $\frac{1}{2}$ M (2) $\frac{1}{5}$ M	
	[molar mass of: $Cl_2 = 71g/mol$; $Ca = 40g/mol$]						
	(1) N_A , $2N_A$ (2) $2N_A$, N_A					(3) $\frac{2}{5}$ M (4) $\frac{3}{5}$ M	
	(3)	N_A , N_A	(4) No:	ne		5	

 $(3) N_A, N_A$

(2) 2N_A, N_A (4) None

- 81. Equal volume of N2 and H2 react to form ammonia under suitable conditions, then the limiting reagent is:
 - (1) N_2
- (2) H_2
- (3) NH₃
- (4) Both (1) and (2)
- 82. The unit of molality is:
 - (1) mole/litre
- (2) g/mol
- (3) It is unitless
- (4) mole/kg
- 83. 20 g NaOH is dissolved in 400 g of water to prepare a solution. The molality of the solution is:
 - (1) 1.25×10^{-3} m
- (2) 2.5×10^{-3} m
- (3) 1.25 m
- (4) 2.5 m
- 84. Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent. It depends upon
 - (i) nature of solute (ii) nature of solvent
 - (iii) temperature
- (iv) pressure
- (1) Only (i), (ii) and (iii)
- (2) Only (i), (iii) and (iv)
- (3) Only (i) and (iv)
- (4) (i), (ii), (iii) and (iv)
- 85. The boiling point of 0.1 m KCl solution in water having ebullioscopic constant (K_b) of 0.51 K kg mol⁻¹ is:
 - (1) 100.102°C
- (2) 99.49°C
- (3) 100.051°C
- (4) 99.949°C

SECTION-B


The value of Henry's law constant for some gases 86. at 293 K is given below. Arrange the gases in the increasing order of their solubility.

He: 144.97 kbar, H₂: 69.16 kbar,

N₂: 76.48 kbar, O₂: 34.86 kbar

- (1) $He < N_2 < H_2 < O_2$
- (2) $O_2 < H_2 < N_2 < He$
- (3) $H_2 < N_2 < O_2 < He$
- (4) $He < O_2 < N_2 < H_2$
- **87.** Mole fraction of C₃H₅(OH)₃ in a solution of 36 g of water and 46 g of glycerine is:
 - (1) 0.46
- (2) 0.36
- (3) 0.20
- (4) 0.40
- 88. A complex containing K⁺ Pt (IV) and Cl⁻ is 100% ionised giving i = 3. Thus, complex is
 - (1) $K_2[PtCl_4]$
 - (2) $K_2[PtCl_6]$
 - (3) $K_3[PtCl_5]$
 - (4) K[PtCl₃]

- 89. The vapour pressure of water depends upon:
 - (1) Surface area of container
 - (2) Volume of container
 - (3) Temperature
 - (4) All of these
- 90. Which of the following is less than zero for ideal solutions?
 - (1) ΔH_{mix}
- (2) ΔV_{mix}
- (3) ΔG_{mix}
- (4) ΔS_{mix}
- For each of the following dilute solutions, van't 91. Hoff factor is equal of 3, except:
 - (1) Na₂SO₄
- (2) CaF₂
- (3) K_3PO_4
- $(4) (NH_4)_2CO_3$
- FeCl₃ on reaction with K₄[Fe(CN)₆] in aqueous 92. solution gives blue colour. These are separated by a semipermeable membrane AB as shown. Due to osmosis there is:

- (1) Blue colour formation in side X.
- (2) Blue colour formation in side Y.
- (3) Blue colour formation in both of the sides X and Y
- (4) No blue colour formation.
- 93. Elevation in boiling point for 1 molal solution of glucose is 2K. The depression in the freezing point for 2 molal solution of glucose in the same solvent is 2K. The relation between K_b and K_f is;
 - (1) $K_b = 1.5 K_f$
 - $(2) \quad K_b = K_f$
 - (3) $K_b = 0.5 K_f$
 - (4) $K_b = 2K_f$
- 94. Two open beakers one containing a solvent and the other containing a mixture of that solvent with a non-volatile solute are together sealed in a container. Over time:
 - (1) the volume of the solution decreases and the volume of the solvent increases
 - (2) the volume of the solution and the solvent does not change
 - (3) the volume of the solution increases and the volume of the solvent decreases
 - (4) the volume of the solution does not change and the volume of the solvent decreases

- 95. 1 g of non-volatile non-electrolyte solute is dissolved in 100 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1 : 5. The ratio of the elevation in their boiling points, $\frac{\Delta T_b(A)}{\Delta T_b(B)}$ is:
 - (1) 5:1
- (2) 10:1
- (3) 1:5
- (4) 1:0.2
- **96.** Which of the following colligative properties is not associated with molality?
 - (1) Lowering of vapour pressure
 - (2) Osmotic pressure
 - (3) Depression in freezing point
 - (4) Elevation in boiling point
- **97.** When mercuric iodide is added to the aqueous solution of potassium iodide:
 - (1) the boiling point does not change
 - (2) freezing point is raised
 - (3) the freezing point is lowered
 - (4) freezing point does not change

- **98.** Which of the following solutions will have highest boiling point?
 - (1) 0.1 M FeCl₃
 - (2) 0.1 M BaCl₂
 - (3) 0.1 M NaCl
 - (4) 0.1 M urea (NH₂ CONH₂)
- **99.** Which one of the following is correct for an ideal solution?
 - (1) It must obey Raoult's law
 - (2) $\Delta S_{mix} = 0$
 - (3) $\Delta H = \Delta V \neq 0$
 - (4) ΔG is always positive
- **100.** The solubility of a solid in a liquid is significantly affected by temperature changes.

Solute + Solvent \Longrightarrow Solution.

The system being in a dynamic equilibrium must follow Le-chatelier's principle. Considering the Le-chatelier's principle which of the following is correct?

- (1) $\Delta H_{sol} > 0$; solubility \uparrow ; temperature \downarrow
- (2) $\Delta H_{sol} < 0$; solubility \downarrow ; temperature \uparrow
- (3) $\Delta H_{sol} > 0$; solubility \downarrow ; temperature \uparrow
- (4) $\Delta H_{sol} < 0$; solubility \uparrow ; temperature \uparrow

Solution

51. (3)

From Raoult's law;

$$\begin{split} P_{total} &= P_A \ + P_B \\ &= P_A^o \ \chi_A + \ P_B^o \ \chi_B \\ &= P_A^o \ (1 - \chi_B) + \ P_B^o \ \chi_B \\ &= P_A^o - \ P_A^o \chi_B + \ P_B^o \ \chi_B \\ &= P_A^o + \ P_B^o \ \chi_B - \ P_A^o \chi_B \end{split}$$

$$P_{total} = P_A^o + \chi_B (P_B^o - P_A^o)$$

or
$$P_{total} = P_A^o - (P_A^o - P_B^o)\chi_B$$
(ii)
 $P = 120 - 75\chi_B$ (i) [given]

Comparing equation (i) and (ii)

$$P_A^o = 120 \text{ torr}$$

and
$$P_A^o - P_B^o = 75 \text{ torr}$$

$$\therefore -P_B^o = 75 \text{ torr } - P_A^o$$

$$-P_B^o = 75 \text{ torr } - 120 \text{ torr}$$

$$-P_B^o = -45 \text{ torr}$$

$$P_B^o = 45 \text{ torr}$$

52. (4)

$$\begin{split} \frac{P^{o} - P_{s}}{P^{o}} &= i \times \chi_{solute} \\ &= \frac{i \; n_{solute}}{i \; n_{solute} + \; n_{solvent}} \\ &= \frac{3 \times 1}{1} = \frac{3}{1} = \frac{1}{1} \end{split}$$

53. (1)

For dissociation;

$$\alpha = \frac{i-1}{n-1}$$

$$\therefore 0.2 = \frac{i-1}{2-1}$$

$$0.2 = i-1$$

$$i = 1.2$$

Hence,
$$\Delta T_f = i K_f m$$

= 1.2 × 1.86 × 0.2
= 0.4464°C = 0.45°C

Thus,

(i) = 3.

Freezing point =
$$0^{\circ}$$
C - (ΔT_f)
= 0° C - $(0.45^{\circ}$ C) = -0.45° C.

54. (4)

For isotonic solutions, $\pi_1 = \pi_2$ $\pi \propto i \times C$ For Na₂SO₄ and Ca(NO₃)₂ van't Hoff factor

55. (2)
$$H_2O + C_4H_9OH$$

56. (3)

$$\pi = i C R T$$

 $= 1 \times \frac{1}{10} \times 0.0821 \times 300$
 $= 2.46 \text{ atm.}$

57. (4)

Vapour pressure
$$\propto \frac{1}{i \times C}$$

 Solute
 $i \times C$

 (1) 0.1 M BaCl₂
 : 0.3

 (2) 0.1 M urea
 : 0.1

(3) 0.1 M Na₂SO₄ : 0.3 (4) 0.1 M Na₃PO₄ : 0.4

58. (2)

When %w/w is given then:

$$\begin{aligned} \text{Molarity} &= \frac{\% \, w/w \times 10 \times d}{GMM} \\ &= \frac{98 \times 10 \times 1.84}{98} M = 18.4 \; M. \end{aligned}$$

59. (3) Only 2 significant figures.

60. (1)

Average atomic mass = $\frac{\mathbf{x} \cdot \mathbf{a} + \mathbf{y} \cdot \mathbf{b}}{100}$

61. (3

$$Mole = \frac{24.9}{249} = 0.1$$

Number of oxygen atom = $0.1 \times 9 \times 6.02 \times 10^{23}$

62. (3)

% of O =
$$\frac{16 \times 27}{(100 + 3 \times 310)} \times 100 = 41.94\%$$

63. (1

Mole =
$$\frac{2}{32} = \frac{1}{16}$$

At N.T.P.

$$Mole = \frac{V(lt)}{22.4}$$
$$\frac{1}{16} = \frac{V(lt)}{22.4}$$

$$V(lt) = 1.4 L$$

64. (3)

Moles of NO₃⁻ =
$$\frac{3.1 \times 10^{-3}}{62 \times 10}$$
 = 0.05×10⁻³

Numbers of molecule = $0.05 \times 10^{-3} \times 6 \times 10^{23}$

$$=3\times10^{19}$$

Numbers of e^- = Numbers of molecule

$$\times$$
 e⁻ in NO₃⁻ Ion
= $3 \times 10^{19} \times 32$
= $96 \times 10^{19} = 9.6 \times 10^{20}$

65. **(2)**

> Number of moles of sucrose = Molar mass

Number of moles of hydrogen atom = 0.075×22 Number of atoms of hydrogen

$$=0.075\times22\times6.023\times10^{23}=9.9\times10^{23}$$

66. **(2)**

1 mole of methane contains 1 mole of C, 2 mole

$$12 \text{ g of C } (1 \text{ mole} = 12 \text{ g})$$

4 g of H₂ (2 moles)

4 gm of Hydrogen atom is the answer.

67. (1)

Atomic number = P = 8

Atomic mass =
$$N + P = 17$$

$$N = 9$$

Total number of neutron = $9 \times 20 \times 10^{25}$ $= 180 \times 10^{25}$

68.

1 mole = Grame mol. mass.

mol. mass =
$$1 \times 2 + 16 = 18$$
 g

$$1 \text{ mole} = 18 \text{ g}$$

1 mole = 16 g

 $3.6 \text{ moles} = 3.6 \times 16 = 56.7$

69. **(2)**

NOBF₄

70.

Fe present in 67200 $u = \frac{0.33}{100} \times 67200$

$$=222u = \frac{222}{56} = 4$$
 atoms

71. **(2)**

 $2\text{VO} + 3\text{Fe}_2\text{O}_3 \rightarrow 6\text{FeO} + \text{V}_2\text{O}_5$ 5 mole 6 mole

$$Fe_2O_3 \rightarrow L.R$$

By unitary method

 $3 \text{ mole } Fe_2O_3 - 1 \text{ mole } V_2O_5$

6 mole $Fe_2O_3 - \frac{1 \times 6}{3}$ mole of V_2O_5 formed

= 2 mole V_2O_5 formed.

72. **(1)**

CaCl₂ molar mass

$$\Rightarrow$$
 40+(35.5)×2

$$\Rightarrow$$
 40+71=111 g

 $Moles \ of \ CaCl_2 = \frac{111 \, g}{111 \, g} = 1 \ mole$

$$\begin{array}{c|cccc} 1 \ CaCl_2 & Ca^{+2} & Cl^- \\ mole \times NA & 1 & 2 \\ `N_A` \ atoms & N_A & 2N_A \end{array}$$

73.

Molarity =
$$\frac{\frac{120}{60}}{\frac{1120 \times 10^{-3}}{1.15}} = 2.05$$

74. **(2)**

> B is limiting reactant as ratio of given moles to stoichiometric coefficient is lowest for B.

75.

Molality and mole fraction do not involve volume term hence they are temperature independent concentration term.

76. (2)

: 100 kg impure sample has pure

$$CaCO_3 = 95 \text{ kg}$$

.. 200 kg impure sample has pure CaCO₃

$$= (95 \times 200 / 100) = 190 \text{ kg}.$$

$$CaCO_3 \rightarrow CaO + CO_2$$

 \therefore 100 kg CaCO₃ gives CaO = 56 kg

$$\therefore 190 \text{ kg CaCO}_3 \text{ gives CaO} = (56 \times 190/100)$$

$$=106.4 \text{ kg}.$$

77.

$$\begin{aligned} \text{Molality} &= \frac{\chi_{solute}}{\chi_{solvent}} \times \frac{1000}{\text{Molar mass of solvent}} \\ &= \frac{0.5}{0.5} \times \frac{1000}{60} = \frac{50}{3} \, \text{m} \end{aligned}$$

78.

% of
$$H_2O = \frac{\text{No. of } H_2O \times (\text{M.wt of } H_2O) \times 100}{\text{M.wt of } (\text{Na}_2\text{SO}_4.\text{xH}_2O)}$$

79.

$$\begin{split} \text{Molarity} &= \frac{n_{solute}}{V_L \text{ solution}} \\ &= \frac{4/40}{500/1000} = \frac{4}{40} \times \frac{1000}{500} \\ &= \frac{1}{10} \times 2 = 0.2 \text{ M} \end{split}$$

$$\begin{split} \text{Molarity} &= \frac{n_{solute}}{V_L \text{ solution}} \\ &= \frac{5.85/58.5}{500/1000} = \frac{5.85}{58.5} \times \frac{1000}{500} \\ &= 0.1 \times 2 = 0.2 \text{ M} = \frac{1}{5} \text{ M} \end{split}$$

81. (2)

Balanced reaction is:

82. (4)

Molality =
$$\frac{\text{Number of moles of solute}}{\text{Mass of solvent in kg}}$$

= $\frac{\text{Mole}}{\text{kg}}$

Hence unit of molality is mole/kg

Thus, limiting reagent is H₂.

83. (3)

Molality =
$$\frac{n_{solute}}{W_{kg} \text{ solvent}}$$

= $\frac{20/40}{400/1000} = \frac{20}{40} \times \frac{1000}{400} = 1.25 \text{ m}$

84. (4)

85. (1)
$$\Delta T_b = i K_b m$$

$$= 2 \times 0.51 \times 0.1 = 0.102^{\circ} C$$
 Hence, Boiling Point = $100^{\circ}C + \Delta T_b$
$$= 100^{\circ}C + 0.102^{\circ}C$$

86. (1)

Higher the value of K_{H} lower is the solubility of gas in liquid.

= 100.102°C

87. (3

Molar mass of glycerine, $C_3H_5(OH)_3 = 92$ g/mol

$$\begin{split} \chi_{glycerine} &= \frac{n_{glycerine}}{n_{glycerine} + n_{H_2O}} \\ &= \frac{46/92}{46/92 + 36/18} \\ &= \frac{\frac{1}{2}}{\frac{1}{2} + 2} = \frac{\frac{1}{2}}{\frac{5}{2}} = \frac{1}{2} \times \frac{2}{5} = 0.2 \end{split}$$

88. (2)

$$K_2[PtCl_6] \rightarrow 2K^+ + [PtCl_6]^{2-}$$

For $K_2[PtCl_4]$, i=3 but oxidation number of Pt=+2

89. (3)

Vapour pressure of liquid depends only upon temperature.

90. (3)

For an ideal solution only $\Delta G_{mix} < 0$ i.e. $\Delta G_{mix} = -ve$

91. (3)

Salt	(i)
Na_2SO_4	3
CaF_2	3
K_3PO_4	4
$(NH_4)_2CO_3$	3

92. (4)

There is no formation of blue colour because only solvent particles can pass through SPM hence Fe³⁺ and [Fe(CN)₆]⁴⁻ ions cannot interact with each other.

93. (4)

(I)
$$\Delta T_b = i K_b m$$

 $2 = 1 \times K_b \times 1$
 $2 = K_b$
(II) $\Delta T_f = i K_f m$
 $2 = 1 \times K_f \times 2$
 $1 = K_f$
 $\therefore K_b = 2 K_f$

94. (3)

The pure solvent will try to maintain higher vapour pressure in the sealed container and in return the solvent vapour molecules will condense in the solution of non-volatile solute as it maintains an equilibrium with lower vapour pressure. (Lowering of vapour pressure is observed when a non-volatile solute is mixed in a volatile solvent).

$$P_{solvent}^{o} > P_{solution}$$

This will lead to increase in the volume of solution container and decrease in the volume of solvent container.

$$\begin{split} \frac{\Delta T_b\left(A\right)}{\Delta T_b\left(B\right)} &= \frac{K_{b(A)} \times m}{K_{b(B)} \times m} \\ &= \frac{K_{b(A)} \times \frac{1 \times 1000}{m.m._{(solute)} \times 100}}{K_{b(B)} \times \frac{1 \times 1000}{m.m._{(solute)} \times 100}} \\ &= \frac{K_{b(A)}}{K_{b(B)}} = \frac{1}{5} \end{split}$$

96. (2)

The formula of osmotic pressure is; $\pi = i C R T$

Hence, there is no involvement of molality in the osmotic pressure.

97. (2)

$$2KI + HgI_2 \rightarrow K_2[HgI_4]$$

No. of moles of ions in KI solution before the addition of $HgI_2 = 2K^+$ and $2I^- = 4$

No. of moles of ions in the solution after the addition of $HgI_2=2K^+$ and $[HgI_4]^-=3$

V.P. and F.Pt. $\propto \frac{1}{\text{No. of moles of ions in the solution}}$

Since number of moles of ions in the solution decreases hence freezing point is raised.

98. (1)

Elevation in boiling point is a colligative property, i.e., depends only on number of particles of ions. 0.1 M FeCl₃ gives maximum number of ions, thus has highest boiling point.

99. (1)

For an ideal solution, $\Delta H = 0$, $\Delta V = 0$

100. (2)

According to Le-chateliers principle, for an exothermic reaction ($\Delta H < 0$) increase in temperature decreases the solubility