- (3) No change
- (4) The solution starts turning blue
- **52.** Saturated solution of KNO₃ with agar-agar is used to make salt bridge because:
 - (1) Size of K^+ ion is greater than that of NO_3^- ion
 - (2) Velocity of NO_3^- ion is greater than that of K^+ ion
 - (3) Velocity of K^+ and NO_3^- ions are nearly the same
 - (4) Both velocity and size of K^+ and NO_3^- ions are same
- **53.** The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the following figure:

(1)	NaCl	(2)	HCl
(3)	CH ₂ COOH	(4)	KNO ₂

- (3) Less than K_{SP} (4) is very small
- 56. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : pH of x M HCl is less than pH of x M CH₃COOH.

Reason (\mathbf{R}) : The degree of ionization of HCl and CH₃COOH are equal.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) Assertion(A) is false and Reason(R) is true
- 57. What will be the emf for the given cell? $Pt|H_2(g, P_1) | H^+(aq) | | H^+(aq) | H_2(g, P_2) Pt$

(1)
$$\frac{\mathrm{RT}}{\mathrm{F}}\ln\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$$
 (2) $\frac{\mathrm{RT}}{\mathrm{2F}}\ln\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$

(3) $\frac{\text{RT}}{\text{F}} \ln \frac{\text{P}_2}{\text{P}_1}$ (4) None of these

- Resistance of 0.1 M KCl solution in a conductance cell is 300 ohm and conductivity is 0.013 S cm⁻¹. The value of cell constant is:
 - (1) 3.9 cm^{-1}
 - (2) 39 m^{-1}
 - (3) 3.9 m^{-1}
 - (4) None of the above
- **59.** Given below are two statements. One is labelled as **Assertion** (**A**) and the other is labelled as **Reason** (**R**).

Assertion (A) : Salt bridge is used generally in the electrochemical cell.

Reason (R) : The ions of the electrolyte used in the salt bridge should have the nearly same transport numbers.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) Assertion(A) is false and Reason(R) is true.
- **60.** An example of a salt dissolved in water to give acidic solution is:
 - (1) Ammonium chloride
 - (2) Sodium acetate
 - (3) Potassium nitrate
 - (4) Barium bromide
- **61.** Which is incorrect?
 - (1) Conjugate acid of H_2O is H_3O^+
 - (2) Conjugate base of HCO_3^- is CO_3^{2-}
 - (3) Conjugate base of NH_3 is NH_2^-
 - (4) Conjugate base of HOCl is Cl⁻
- **62.** Match **List-I with List-II** to find out the **correct** option:

List-I (Property)		List-II (Unit)	
(I)	Conductance	(A)	S m ⁻¹
(II)	Conductivity	(B)	$S^{-1} m$
(III)	Molar conductivity	(C)	$S m^2 mol^{-1}$
(IV)	Resistivity	(D)	S

- (1) $I \rightarrow A$; $II \rightarrow B$; $III \rightarrow C$; $IV \rightarrow D$
- (2) $I \rightarrow A$; $II \rightarrow B$; $III \rightarrow D$; $IV \rightarrow C$
- (3) $I \rightarrow B$; $II \rightarrow A$; $III \rightarrow C$; $IV \rightarrow D$
- (4) $I \rightarrow D$; $II \rightarrow A$; $III \rightarrow C$; $IV \rightarrow B$

- **63.** The solubility product of AgBr is 4.9×10^{-9} . The solubility of AgBr will be:
 - (1) 7×10^{-4} mole/litre
 - (2) 7×10^{-5} g/litre
 - (3) 1.316×10^{-2} g/litre
 - (4) 1×10^{-3} mole/litre
- **64.** Which of the following salts will give highest pH in water?
 - (1) KCl (2) NaCl (2) NaCl
 - $(3) Na_2CO_3 \qquad (4) CuSO_4$
- **65.** In a buffer solution containing equal concentrations of B^- and HB, the K_b for B^- is 10^{-10} . The pH of buffer solution is:
 - (1) 10
 (2) 7

 (3) 6
 (4) 4
- 66. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Molar conductivity of 0.1 M NH_4OH solution is less than that of 0.001 M NH_4OH solution.

Reason (**R**) : Dilution increases the degree of ionization of NH₄OH.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) Assertion(A) is false and Reason(R) is true.
- **67.** How many Faradays are required to reduce 0.25 g of Nb (V) to the metal?

(Atomic weight : Nb = 93 u)

- (1) 2.7×10^{-3} (2) 1.3×10^{-2}
- (3) 2.7×10^{-2} (4) 7.8×10^{-3}
- 68. For cell reaction,

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$, cell representation is:

- (1) $\operatorname{Zn} | \operatorname{Zn}^{2+} | \operatorname{Cu}^{2+} | \operatorname{Cu}^{2+} | \operatorname{Cu}$
- (2) $Cu | Zn^{2+} || Zn | Cu^{2+}$
- (3) $Cu | Zn^{2+} || Zn | Cu$
- (4) $Cu^{2+} |Zn||Zn^{2+}|Cu$

- **69.** The oxidation potentials of A and B are +2.37 V and +1.66 V respectively. In chemical reactions:
 - (1) A will be replaced by B
 - (2) A will replace B
 - (3) A will not replace B
 - (4) A and B will not replace each other
- **70.** Which one of the following is the strongest oxidising agent?

$$\begin{bmatrix} E_{Fe^{3+}/Fe^{2+}}^{o} = 0.77V, E_{I_{2}/I^{-}}^{o} = 0.54 V, \\ E_{Cu^{2+}/Cu}^{o} = 0.34V, E_{Ag^{+}/Ag}^{o} = 0.80 V \end{bmatrix}$$
(1) Ag⁺
(2) Fe³⁺
(3) Cu²⁺
(4) I

- (3) Cu^{2+} (4) I_2
- **71.** The dissociation constant of monobasic acids A, B and C are 10^{-4} , 10^{-6} and 10^{-10} respectively. The concentration of each monobasic acid is 0.1 M. Which of the following has been arranged in increasing order of pH?
 - (1) C < B < A
 - $(2) \quad A < B < C$
 - $(3) \quad \mathbf{B} < \mathbf{C} < \mathbf{A}$
 - $(4) \quad B < A < C$
- **72.** Match **List-I** with **List-II** to find out the **correct** option:

List-I			List-II	
(I)	NaOH	(A)	Arrhenius base	
(II)	NH ₃	(B)	Bronsted base	
(III)	HCl	(C)	Arrhenius acid	
(IV)	AlCl ₃	(D)	Lewis acid	

- (1) $I \rightarrow A$; $II \rightarrow B$; $III \rightarrow C$; $IV \rightarrow D$
- (2) $I \rightarrow A$; $II \rightarrow B$; $III \rightarrow D$; $IV \rightarrow C$
- (3) $I \rightarrow B$; $II \rightarrow A$; $III \rightarrow C$; $IV \rightarrow D$
- (4) $I \rightarrow C$; $II \rightarrow A$; $III \rightarrow B$; $IV \rightarrow D$
- **73.** pH of $Ba(OH)_2$ solution is 12. Its solubility product is:
 - (1) $10^{-6} \,\mathrm{M}^3$ (2) $4 \times 10^{-6} \,\mathrm{M}^3$
 - (3) $5 \times 10^{-7} \text{ M}^3$ (4) $5 \times 10^{-6} \text{ M}^3$
- **74.** The degree of dissociation of acetic acid in a 0.1 M solution is 1.32×10^{-2} . Find out the dissociation constant of the acid?
 - (1) 1.50×10^{-4}
 - (2) 1.80×10^{-6}
 - (3) 1.76×10^{-5}
 - (4) 1.2×10^{-3}

75. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Molten aluminium chloride when electrolysed using 0.1 F, deposits 0.1 g equivalent of aluminium.

Reason (**R**) : Mass of substance deposited depends on quantity of electricity passed through it.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) **Assertion(A)** is false and **Reason(R)** is true.
- **76.** pH of a 0.001 M Ba(OH)₂ solution is:

 $\left[\log_{10} 2 = 0.3\right]$

- (1) 9
 (2) 11

 (3) 11.3
 (4) 12.3
- **77.** When 0.05 moles of the following acids are dissolved in 1000 mL of H₂O, the [H⁺] will be greatest in:
 - (1) $HNO_2: pK_a = 3.0$
 - (2) $HCOOH : pK_a = 3.75$
 - (3) HCN : $pK_a = 9.4$
 - (4) $CH_3COOH: pK_a = 4.75$
- **78.** A volume of 20 mL of 0.8 M HCN solution is mixed with 80 mL of 0.4 M NaCN solution. The pH of the resulting solution is:

[K_a of HCN = 2.5×10^{-10} , log 2 = 0.3, log 5 = 0.7] (1) 9.9 (2) 9.3 (3) 4.1 (4) 4.7

79. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : HCl and NaCl cannot form buffer solution.

Reason (**R**) : Buffer solution is formed by a weak acid and its conjugate salt.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) Assertion(A) is false and Reason(R) is true.

If $E_{Fe^{2+}/Fe}^{o} = -0.441 \text{ V}$ and 80.

> $E^{o}_{_{\mathrm{Fo}}^{3_{+}}/_{\mathrm{Fo}}^{2_{+}}}\!=\!0.771~\mathrm{V}$, then the standard emf of the reaction.

Fe-	$+2Fe^{3+} \rightarrow 3Fe^{2-}$	⁺ will be:	
(1)	0.330 V	(2)	1.653 V
(3)	1.212 V	(4)	0.111 V

81. The standard potential at 25°C for the following half reactions are given as

$$Zn^{2+} + 2e^{-} \rightarrow Zn; E^{o} = -0.762 V$$

 $Mg^{2+} + 2e^- \rightarrow Mg; E^o = -2.37 V$

When zinc dust is added to a solution of magnesium chloride:

- (1) Zinc chloride is formed
- (2) Zinc dissolves in solution
- (3) Magnesium is precipitated
- (4) No reaction will take place
- The expression connecting E_{cell}^{o} and K_{eq} of the 82. reaction occurring in a Galvanic cell is:
 - (1) $\log K_{eq} = nFE^{\circ}/RT$
 - (2) $\log K_{eq} = -nFE^{\circ}/RT$
 - (3) $\ln K_{eq} = nFE^{o}/RT$
 - (4) $\ln K_{eq} = \frac{-nFE^{\circ}}{RT}$
- The standard free energy change of the reaction 83. $Cu^{2+}(aq) + Sn(s) \rightarrow Cu(s) + Sn^{2+}(aq)$ (Given $E^{\circ} = 0.48 \text{ V}$) is: (2) $-62.1 \text{ kJ mol}^{-1}$ (1) $-31.8 \text{ kJ mol}^{-1}$ (4) $-92.64 \text{ kJ mol}^{-1}$ (3) $-79.2 \text{ kJ mol}^{-1}$
- 84. Calculate the molar concentration of a solution of acetic acid (HOAc) that has a pH of 3. $[K_a = 1.8 \times 10^{-5}]$ (1) 1.0×10^{-3} (2) 1.0×10^{-6}
 - (3) 0.057 (4) 0.010
- 85. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : pH of 10⁻⁸ M HCl solution is approximately 6.9.

Reason (**R**) : HCl is a strong acid.

- (1) Both Assertion(A) and Reason(R) are true and **Reason**(**R**) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but **Reason(R)** is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) Assertion(A) is false and Reason(R) is true.

SECTION-B

86. A certain quantity of electricity is passed through the aqueous solutions of AgNO₃ and CuSO₄ in series. If the mass of Ag deposited is 1.08 g, the mass of Cu deposited will be:

(1)	0.635 g	(2)	6.35 g
(3)	0.3175 g	(4)	1.270 g

The standard reduction potentials, E° for the half 87. reactions are

> $Zn^{2+} + 2e^- \rightarrow Zn$: $E^{\circ} = -0.76V$

 $Fe^{2+} + 2e^- \rightarrow Fe$: $E^{\circ} = -0.41V$

The standard emf of the cell involving the reaction

V

$$\begin{array}{ll} {\rm Fe}^{2+} + {\rm Zn} \rightarrow {\rm Zn}^{2+} + {\rm Fe} \ {\rm is}: \\ (1) & -0.35 \ {\rm V} \\ (3) & +0.35 \ {\rm V} \\ \end{array} \begin{array}{ll} (2) & +1.17 \ {\rm V} \\ (4) & -1.17 \ {\rm V} \end{array}$$

88. In the Galvanic cell, true statement is:

- (1) Current flows from anode to cathode
- (2) Anode is positive terminal
- (3) If $E_{cell} < 0$, it is a spontaneous reaction
- (4) Cathode is positive terminal
- For the given half-cell, $Al^{3+} + 3e^- \rightarrow Al$; on 89. increasing $[A1^{3+}]$, the electrode potential:
 - (1) Increases
 - (2) Decreases
 - (3) No change
 - (4) First increases than decreases
- 90. The emf of a chemical cell is positive when free energy change of reaction:
 - (1) > 0
 - (2) < 0
 - (3) = 0
 - (4) No relationship of free energy change and emf

91. Boric acid (H₃BO₃) is

- (1) Monobasic and weak Lewis acid
- (2) Tribasic and strong Lewis acid
- (3) Monobasic and weak Bronsted acid
- (4) Tribasic and weak Bronsted acid
- 92. The coulombic charge on one mole electron is:
 - (1) $1.6 \times 10^{-19} \text{ C}$
 - (2) 96500 C
 - (3) $6.02 \times 10^{-23} \text{ C}$
 - (4) 1.6×10^{-23} C

- **93.** The pK_w of water at 50°C is 13.40. An aqueous solution at 50°C has pH = 7. This solution is-
 - Acidic
 Alkaline
 Neutral
 Amphoteric
- 94. The pH of 0.01 M sodium acetate solution is : $[K_a \text{ of CH}_3\text{COOH} = 2 \times 10^{-5}]$

(1) 7.25 (2) 6.5

- (3) 8.05 (4) 8.35
- **95.** Given below are two statements. One is labelled as **Assertion** (**A**) and the other is labelled as **Reason** (**R**).

Assertion (A) : pH of 0.1 M HCl solution is less than 0.1 M HCN solution.

Reason (**R**) : In equimolar solutions, the number of ionizable H^+ present in HCl is less than present in HCN solution.

- Both Assertion(A) and Reason(R) are true and Reason(R) is the correct explanation of Assertion(A).
- (2) Both Assertion(A) and Reason(R) are true but Reason(R) is not the correct explanation of Assertion(A).
- (3) Assertion(A) is true and Reason(R) is false.
- (4) **Assertion(A)** is false and **Reason(R)** is true.
- 96. Which of the given solutions have $pOH = pK_b$ of NH_3 ?
 - (1) 10 mL of 0.1 M HCl + 10 mL of 0.2 M NH₃
 - (2) 10 mL of 0.1 M HCl + 20 mL of 0.1 M NH₃
 - (3) 50 mL of 0.2 M HCl + 20 mL of 1 M NH₃
 - (4) All of the above

97. For given cell :

 $\operatorname{Zn} |\operatorname{Zn}^{2+}(C_1)|| \operatorname{Zn}^{2+}(C_2)| \operatorname{Zn}; \Delta G$ is negative if:

- (1) $C_1 = C_2$
- (2) $C_1 > C_2$
- (3) $C_2 > C_1$
- (4) Can't be predicted

- (1) 0.177 V
- (2) 0.087 V
- (3) -0.177 V
- (4) 0.059 V

99. What volume of 0.05 M H₂SO₄ must be added to 10 mL of 0.1 M NaOH solution to neutralize 50% base ?

- (1) 10 mL
- (2) 5 mL
- (3) 7.5 mL
- (4) 2.5 mL

100. 1 L of buffer solution contains one mole of $(CH_3COO)_2Ca$ and one mole of CH_3COOH . Which of the following statement is correct? $(pK_a = 4.7)$

- (1) pH = 9
- (2) pOH = 9
- (3) pH = 4.4
- (4) pOH = 8.6

^{98.} The hydrogen electrode is dipped in a solution of pH = 3 at 25°C. The reduction potential of the electrode would be:

55. (2)

> Precipitation occurs only when ionic product > solubility product due to which the reaction shifts backward and solid precipitate is obtained.

[New NCERT Class 11th Page No. 203]

(3) 56.

> HCl is a strong electrolyte and acetic acid is a weak electrolyte.

> > [New NCERT Class 12th Page No. 193]

57. (2)

Cell reaction at anode;

 $H_2 \longrightarrow 2H^+ + 2e^ (P_{1})$

Cell reaction at cathode;

$$2H^{+} + 2e^{-} \longrightarrow H_{2}$$

$$(P_{2})$$
Hence, $E_{cell} = E_{cell}^{o} - \frac{RT}{nF} ln \frac{P_{2}}{P_{1}}$

Since both electrodes are identical

Hence $E_{cell}^{o} = 0$

Thus,
$$E_{cell} = 0 - \frac{RT}{nF} ln \frac{P_2}{P_1} = -\frac{RT}{2F} ln \frac{P_2}{P_1}$$
$$= \frac{RT}{2F} ln \frac{P_1}{P_2}$$

[New NCERT Class 12th Page No. 38]

58. (1)

Cell constant = $\kappa \times R$ $= 0.013 \times 300 = 3.9 \text{ cm}^{-1}$ [New NCERT Class 12th Page No. 44]

59. (2)

Salt bridge is used to maintain electrical neutrality of solution. Velocity of ions is nearly the same.

[New NCERT Class 12th Page No. 33]

60. (1)

An acidic salt gives acidic solution, NH₄Cl is made up of weak base and strong acid, hence gives acidic solution.

[New NCERT Class 11th Page No. 202]

61. (4)

HOCl $H^+ + OCl^{\Theta}$ \rightarrow Acid Conjugate base [New NCERT Class 11th Page No. 191]

62. (4)

The unit of conductance is S.

Resistivity is the reciprocal of conductivity.

Conductivity is the product of conductance and cell constant.

Molar conductivity is the conductivity for 1 molar electrolytic solution.

[New NCERT Class 12th Page No. 45]

63. (3)

1 - S

$$AgBr \rightleftharpoons Ag^{\oplus} + Br^{\bigcirc}$$
$$1 - S \qquad S \qquad S$$

S

64. (3)

> Na₂CO₃ is a basic salt. [New NCERT Class 11th Page No. 194]

65. (4)

According to Henderson - Hasselbach equation

$$pOH = pK_b + \log \frac{[salt]}{[base]} = 10 + \log 1 = 10$$

∴
$$pH = 14 - pOH = 14 - 10 = 4$$

[New NCERT Class 11th Page No. 203]

$$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm M} \Longrightarrow \Lambda_{\rm m} \propto \frac{1}{\rm M}$$
[New NCERT Class 12th Page No. 45]

67. (2)

> $Nb^{5+}(aq) + 5e^{-} \rightarrow Nb(s)$ \therefore 93 g Nb requires electricity = 5 F \therefore 0.25 g Nb will require electricity = 1.3×10^{-2} F [New NCERT Class 12th Page No. 52]

68. (1)

> Cu is reduced and Zn is oxidized. So, copper is present at cathode and zinc is present at anode. [New NCERT Class 12th Page No. 38]

69. (2)

Follow ECS, A will replace B. Greater the oxidation potential more is the reactivity.

[New NCERT Class 12th Page No. 37]

70. (1)

Oxidizing power ∞ standard reduction potential (SRP)

Since SRP of Ag⁺/Ag is highest

So, Ag⁺ will be most readily reduced to Ag.

$$\therefore \quad Ag^+ \Rightarrow \text{Strongest oxidizing agent.}$$

[New NCERT Class 12th Page No. 38]

71. (2)

 $HA \underbrace{\longrightarrow} H^{+} + A^{-}$ $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$

Smaller the value of K_a, more will be the pH. [New NCERT Class 12th Page No. 195]

72. (1)

Arrhenius acid can lose H^+ ions and Arrhenius bases can lose OH^- ions.

Lewis acids are electron deficient in nature.

[New NCERT Class 11th Page No. 190]

73. (3)

$$\begin{split} [H^+] &= 10^{-12} \text{ M} \\ [OH^-] \ 10^{-2} \text{ M} &= 2 \text{ S} \ [\therefore \text{ S} = 5 \times 10^{-3}] \\ Ba(OH)_2 &\longrightarrow Ba_S^{2+} + 2 \underbrace{OH^-}_{2S} \\ \therefore \quad K_{SP} &= 4 \text{ S}^3 \\ \Rightarrow \quad K_{SP} &= 4 \times (5 \times 10^{-3})^3 \\ \Rightarrow \quad K_{SP} &= 500 \times 10^{-9} = 5 \times 10^{-7} \text{ M}^3 \\ \text{[New NCERT Class 11th Page No. 198]} \end{split}$$

74. (3)

$$K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}$$
$$= \frac{0.1 \times 0.0132 \times 0.1 \times 0.0132}{0.1(1 - 0.0132)} = 1.76 \times 10^{-5}$$

[New NCERT Class 11th Page No. 196]

75. (1)

 $Al^{3+} + 3e^- \rightarrow Al$

3 mole charge = 1 g equivalent electron = 1 F charge is required to deposit 1 mole of Al.

 \therefore 0.1 F \rightarrow 0.1 mole Al is deposited.

[New NCERT Class 12th Page No. 52]

76. (3)

Ba(OH)₂ → Ba²⁺ + 2OH⁻_{2×10⁻³ M} pOH = -log[OH⁻] = -log[2×10⁻³] = -log 2 + 3log 10 pH = 14 - pOH = 14 - 2.7 = 11.3 [New NCERT Class 11th Page No. 194]

77. (1)

Smaller is the pK_a , stronger will be the acid, greater will be the $[H^+]$.

[New NCERT Class 11th Page No. 195]

```
78. (1)
```

$$pH = pK_{a} + \log \frac{[CN^{-}]}{[HCN]}$$
$$= -\log(2.5 \times 10^{-10}) + \log \left[\frac{\frac{80}{100}(0.4)}{\frac{20}{100}(0.8)}\right] = 9.9$$

[New NCERT Class 12th Page No. 203]

79. (1)

Both assertion and reason are correct as strong acids and their salts do not form buffer solutions.

[New NCERT Class 11th Page No. 203]

80. (3)

For the reaction, $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$ $E^{\circ} = 0.771 \text{ V} + 0.441 \text{ V} = 1.212 \text{ V}$ [New NCERT Class 12th Page No. 39]

81. (4)

$$E_{Zn^{2+}/Zn}^{o} > E_{Mg^{2+}/Mg}^{o}$$

$$\therefore \quad Zn \text{ cannot replace } Mg^{2+} \text{ from its solution.}$$
[New NCERT Class 12th Page No.37]

82. (3)

At equilibrium, $E_{cell} = Zero$ $E_{cell} = E^{\circ} - \frac{RT}{nF} \ln K_{eq}$ $\ln K_{eq} = \frac{nFE^{\circ}}{RT}$

[New NCERT Class 12th Page No. 39]

83. (4)

$$\Delta G^{o} = -nF E_{cell}^{o}$$

= - 2 × 96500 × 0.48
= -92640 J mol⁻¹
= -92.64 kJ mol⁻¹
[New NCERT Class 12th Page No. 39]

84. (3)

$$K_{a} = \frac{[H^{+}][OAc^{-}]}{[HOAc]}$$

or $1.8 \times 10^{-5} = \frac{(10^{-3})^{2}}{[HOAc]}$
or $[HOAc] = 5.56 \times 10^{-2} = 0.056 \text{ M}$
[New NCERT Class 11th Page No. 196]

85. (2)

HCl is indeed a strong acid. For 10^{-8} M solution of HCl

$$[H^{+}] = 10^{-8} + \frac{10^{-7}}{\uparrow} = 1.1 \times 10^{-7}$$

Due to
water
$$\therefore \quad pH = -\log_{10} [H^{+}] = 6.9$$

[New NCERT Class 11th Page No. 196]

86. (3)

 $\frac{\text{Mass of Cu deposited}}{\text{Mass of Ag deposited}} = \frac{\text{Eq. wt. of Cu}}{\text{Eq. wt. of Ag}}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Eq. \text{ wt. of Cu} = \frac{63.5}{2} = 31.75$ $Ag^{+} + e^{-} \rightarrow Ag$ $Eq. \text{ wt. of Ag} = \frac{108}{1} = 108$ Now, eq. (1) becomes, $W_{Cu} = \frac{31.75 \times 1.08}{108} = 0.3175 \text{ g}$

[New NCERT Class 12th Page No. 47]

87. (3)

$$\begin{split} E^{o}_{cell} &= E^{o}_{Fe^{2^{+}}/Fe} - E^{o}_{Zn^{2^{+}}/Zn} \\ &= -0.71 \ V - (-0.76 \ V) = 0.35 \ V \\ & \textbf{[New NCERT Class 12^{th} Page No. 38]} \end{split}$$

88. (4)

In Galvanic cell

Current flows from cathode to anode Anode is negative terminal $\rightarrow \Delta G = -nF E_{cell}$ If $E_{cell} > 0$, ΔG = negative (spontaneous) Cathode is positive terminal

[New NCERT Class 12th Page No. 35]

89. (1)

$$E = E^{\circ} + \frac{0.059}{3} \log \frac{[Al^{3+}]}{[Al]}$$

So, if $[Al^{3+}] \uparrow = E \uparrow$

[New NCERT Class 12th Page No. 38]

90. (2)

 $\Delta G = -nFE_{cell}$ If $E_{cell} = positive$ then $\Delta G = negative$ [less than zero]

[New NCERT Class 12th Page No. 40]

91. (1)

Boric acid H₃BO₃ is monobasic and weak Lewis acid according to the following reaction: $H_3BO_3 + H_2O \rightarrow B(OH)_4^{\ominus} + H^{\oplus}$

92. (2)

Charge on 1 mole electrons $\Rightarrow 1.6 \times 10^{-19} \times N_A$

96500 C \rightarrow known as 1 Faraday

[New NCERT Class 12th Page No. 52]

93. (2)

$$pH = \frac{13.40}{2} = 6.7$$
 for neutral solution.
 $pH > 6.7$ will be for alkaline solution.
[New NCERT Class 11th Page No. 194]

$$pH = \frac{1}{2} [pK_w + pK_a + \log_{10} C]$$

= $\frac{1}{2} [14 + 5 - \log 2 + \log_{10} 10^{-2}] = 8.35$
[New NCERT Class 11th Page No. 195]

95. (3)

HCl is stronger acid than HCN.

:. pH of HCl is lesser than pH of HCN when both are equimolar.

Number of ionizable H^+ is 1 for both HCl and HCN.

[New NCERT Class 11th Page No. 195]

96. (4)

 $pOH = pK_{b} + log \frac{[salt]}{[base]}$ As [salt] = [base] $pOH = pK_{b}$ [New NCERT Class 11th Page No. 203]

97. (3)

 $Zn \mid Zn^{2+}_{(C_1)} \mid\mid Zn^{2+}_{(C_2)} \mid Zn \rightarrow This \text{ is a concentration cell}$

 $E = E^{o} + \frac{0.059}{2} \log \frac{[Zn^{2+}] \text{ cathode}}{[Zn^{2+}] \text{ anode}}$ $\left[E^{o}_{\text{cell}}\right] \text{ cathode and anode are same.}$

 $E_{cell} = 0 + \frac{0.059}{2} \log \frac{C_2}{C_1}$

$$\Rightarrow \quad \text{If } C_2 > C_1 \rightarrow E_{\text{cell}} = \text{positive then } \Delta G$$

$$\Rightarrow$$
 (-)nFE^o_{Cell} \Rightarrow negative

[New NCERT Class 12th Page No. 40]

(3) $pH = 3, pH = -log_{10}[H^+]$ $3 = -log_{10}[H^+]$ $E = E^o + \frac{0.059}{2} log \frac{[H^+]^2}{P_{H_2}}$ $\Rightarrow 0 + \frac{0.059}{2} log \frac{(10^{-3})^2}{1}$ $\Rightarrow \frac{0.059}{2}(-6) \times log 10$ $\Rightarrow (-)0.059 \times 3 = -0.177 V$ [New NCERT Class 12th Page No. 39]

99. (2) V×0.05×2=0.5×10×0.1 V = 5 mL [New NCERT Class 11th Page No. 194]

100. (2)

98.

pH =
$$4.7 + \log \frac{2}{1}$$

pH = 5 and hence pOH = 9
[New NCERT Class 11th Page No. 203]