	(1) Glycolysis; oxidative phosphorylation ; TCA cycle		(1) 1, 2 (2) 2, 1 (3) 0, 0 (4) 36, 6
	(2) Oxidative phosphorylation; GlycolyNEETCOG cycle Biolo	(20 <u>2</u> 4	During glycolysis, for each mole of glucose
	(3) Glycolysis; TCA cycle; oxid CiviZ - phosphorylation	-19 -19	 (1) 6 moles of ATP are produced (2) 2 males of NAD⁺ are much and
	(4) Glycolysis; fermentation		 (2) 2 moles of NAD[*] are produced (3) 2 moles of ATP are used, and 4 moles of ATP are produced
102.	Glycolysis occurs in the and produces, which in the presence of O_2 enters the		(4) No ATP is produced
	(1) Cytosol; pyruvate; mitochondrion	107.	In the absence of O_2 cells capable of fermentation:
	(2) Cytosol; glucose; mitochondrion		(1) Accumulate glucose
	(3) Mitochondrion; pyruvate; chloroplast		(2) No longer produce ATP
	(4) Chloroplast; glucose; cytosol		(3) Accumulate pyruvate
			(4) Oxidise NADH to produce NAD ⁺
103.	The end product of glycolysis is:		
	(1) Pyruvate	108.	In alcoholic fermentation, NAD ⁺ is produced
	(2) The starting point for TCA cycle		during the:
	(3) The starting point for fermentation		(1) Reduction of acetaldehyde to ethanol
	(4) All of these		(2) Oxidation of glucose
			(3) Oxidation of pyruvate to acetyl CoA (4) $H = 1 + \frac{1}{2} = \frac{1}{2} + $
104	The reasons why plants can get along without		(4) Hydrolysis of ATP to ADP
104.	respiratory organs are:	100	The result of first five reaction of the glycolytic
	(1) Almost all living cells in a plant have their	103.	nathway are:
	surface exposed to air		(1) Adding phosphates modifying sugars and
	(2) Plant have little demand for gas exchange		forming 3PGA1d

- (3) Taking care of its own gas exchange need by every part, very little transport of gases from one part to another
- (4) All of these

- (2) Removal of e⁻ and H⁺ from glucose
 (3) Oxidation of pyruvate and formation of acetyl CoA
- (4) Oxidative step

- **110.** Fermentation takes place:
 - (1) Under anaerobic conditions in many prokaryotes and unicellular eukaryotes
 - (2) Under aerobic conditions in many prokaryotes and unicellular eukaryotes
 - (3) Under anaerobic conditions in all prokaryotes and unicellular eukaryotes
 - (4) Under aerobic conditions in all prokaryotes and unicellular eukaryotes
- 111. The main purpose of cellular respiration is to
 - (1) Convert potential to kinetic energy
 - (2) Convert kinetic to potential energy
 - (3) Create energy in the cell
 - (4) Convert energy stored in the chemical bonds of glucose to an energy that the cell can use
- 112. If O_2 is not present, yeast cells break down glucose
 - to
 - (1) $CO_2 + H_2O$
 - (2) $CO_2 + Latic acid$
 - (3) CO_2 + Pyruvic acid
 - (4) C₂H₅OH and CO₂

113.

Figure: Major pathway of Anaerobic respiration Identify A, B and C

	А	В	С
(1)	NAD^+	Ethanol	Lactic acid
(2)	Ethanol	NAD ⁺	Lactic acid
(3)	Lactic acid	Ethanol	NAD
(4)	NAD	Lactic acid	Ethanol

114. Pyruvate $\rightarrow C_2H_5OH + CO_2$

The above reaction needs 2 enzymes named as

- (1) Pyruvate decarboxylase and alcohol dehydrogenase
- (2) Pyruvate decarboxylase and enolase
- (3) Pyruvate decarboxylase and pyruvate kinase
- (4) Pyruvate carboxylase + Aldolase
- 115. Which one is correct?
 - (1) In absence of O_2 , fermentation regenerates the NAD⁺ needed for glycolysis
 - (2) Fermentation does not liberate all the energy available in each sugar molecule
 - (3) When alcohol concentration reaches 13%, the yeast cells become poisoned and die
 - (4) All
- 116. Where is ATP synthesized in glycolysis?
 - (1) When 1, 3 di PGA is changed into 3 PGA
 - (2) When PEP is changed into pyruvic acid
 - (3) When Fr. 1, 6 di P is broken in Triose phosphate (2 molecules)
 - (4) Both (1) and (2)
- **117.** In Kreb's cycle, the first product is citric acid which is a 6-carbon compound. It is formed by a condensing irreversible reaction between?
 - (1) OAA and Pyruvic acid
 - (2) OAA and Acetyl Coenzyme A
 - (3) Pyruvic acid and Acetyl Coenzyme A
 - (4) OAA and Citrate synthetase
- **118.** In Kreb's cycle, how many oxidation (dehydrogenation) occur?
 - (1) 4
 - (2) 6
 - (3) 2
 - (4) 1
- **119.** In Kreb's cycle
 - (1) Acetyl coenzyme A undergoes 4 oxidations and 2 decarboxylations
 - (2) Pyruvic acid undergoes 4 oxidations and 2 decarboxylations
 - (3) TCA undergoes 4 oxidations and 4 decarboxylations
 - (4) OAA undergoes 4 oxidation and 2 decarboxylations
- **120.** At the end of the Kreb's cycle, most of energy removed from glucose molecule is transferred to?
 - (1) NADH + $H^+/FADH + H^+$
 - (2) ATP
 - (3) OAA
 - (4) Citric acid

- **121.** Which of the following statements correctly describes relationship between the Kreb's cycle and electron transport pathway?
 - The Kreb's cycle releases H⁺ used by electron transport
 - (2) The electron transport pathway obtains electron from the CO₂ produced by the Kreb's cycle
 - (3) The Kreb's cycle and electron transport pathway, both produce ATP
 - (4) NADH + H⁺ produced by Kreb's cycle is used to make a ATP by electron transport
- **122.** At the end of the Kreb's cycle, but before the electron transport chain, the oxidation of glucose has produced a net gain of
 - (1) 3CO₂, 5NADH₂, 1 FADH₂, 2 ATP
 - (2) 6CO₂, 10NADH₂, 2FADH₂, 4ATP
 - (3) 6CO₂, 10 NADH₂, 2FADH₂, 38 ATP
 - (4) None of the above is correct
- **123.** All of the following processes can release CO₂ except
 - (1) Alcohol fermentation
 - (2) Oxidative decarboxylation and Kreb's cycle
 - (3) Oxidative phosphorylation
 - (4) α -Ketoglutaric acid \rightarrow Succinic acid
- **124.** The first reaction of Kreb's cycle i.e. condensation of acetyl group with OAA and water is catalysed by
 - (1) Citrate synthetase
 - (2) Succinate dehydrogenase
 - (3) RuBisCo
 - (4) PEPCase
- **125.** Water is the by-product of cellular respiration. The water is produced as a result of
 - (1) Conversion of pyruvate to acetyl CoA
 - (2) Conversion of glucose to pyruvate
 - (3) Combining carbon dioxide with protons
 - (4) The reduction of oxygen at the end of electron transport chain

(2) $C_6H_{12}O_6$

- **126.** The main purpose of electron transport chain is to
 - (1) Cycle NADH + H^+ back to NAD⁺
 - (2) Use the intermediates from TCA cycle
 - (3) Breakdown pyruvate
 - (4) All
- **127.** Terminal e⁻ acceptor of e⁻ transport is
 - (1) CO₂
 - (3) H_2O (4) O_2

128. Statement I: Mitochondria are site of oxidative phosphorylation.

Statement II: Krebs cycle takes place in mitochondria.

- (1) If both statements are correct.
- (2) If both statement are incorrect.
- (3) If only statement I is correct.
- (4) If only statement II is correct.
- **129.** Statement I: During passage of electron over ETC, pH of matrix decreases.

Statement II: During EMP pathway, ATP is produced through substrate phosphorylation.

- (1) If both statements are correct.
- (2) If both statement are incorrect.
- (3) If only statement I is correct.
- (4) If only statement II is correct.
- **130.** Assertion: Aerobic respiration yields more energy than anaerobic respiration.

Reason: In aerobic respiration there is complete oxidation of organic substances in presence of oxygen and release all hydrogen and CO_2

- (1) Both assertion and reason are true and the reason is the correct explanation of the assertion.
- (2) Both assertion and reason are true but the reason is not the correct explanation of the assertion.
- (3) Assertion is a true statement but reason is false.
- (4) Both assertion and reason are false statements.

131. Assertion: Oxygen is vital for aerobic respiration.

Reason: Oxygen drives whole process by removing hydrogen from the system.

- (1) Both assertion and reason are true and the reason is the correct explanation of the assertion.
- (2) Both assertion and reason are true but the reason is not the correct explanation of the assertion.
- (3) Assertion is a true statement but reason is false.
- (4) Both assertion and reason are false statements.
- **132.** The e⁻ carrier molecules and cytochrome
 - (1) Are reduced as they pass electrons on to the next molecule
 - (2) Transfer electrons between the electron carrier complexes
 - (3) Shuttle protons to ATP synthase
 - (4) Are found in outer mitochondrial membrane

- **133.** The oxidation of a molecule of FADH₂ yield less ATP (2ATP) and a molecule of NADH₂ yields 3ATP but FADH₂ yields only 2 ATP because
 - (1) Carries few electrons
 - (2) Passes its electrons to a transport molecule later in the chain and at a lower level
 - (3) Has a lower energy conformation than $NADH_2$
 - (4) Is formed in the cytosol and energy is lost when it shuttles it's electron across the mitochondrial membrane
- **134.** I. Proton channel of oxysome/complex V/ATP synthase is located in F_0
 - **II.** Metabolic water is water produced in terminal oxidation/produced in respiration
 - III. CoQ accepts electron from NADH dehydrogenase (complex I) and also can accept electron from FADH₂/succinate Qreductase/complex II.
 - **IV.** Cytochrome c is a small protein attached to outer surface of the inner mitochondrial membrane and acts as a mobile carrier for transfer of electrons between complex II (cyt bc, complex) and IV.
 - V. Complex IV refers to cytochrome c oxidase (Cyt a, a₃ and 2 cu per centre)
 - **VI.** If a cell treated with a drug that inhibits ATP synthase, the pH of mitochondrial matrix will increase.
 - VII. If glycolysis is interrupted mammalian mature RBC/s would eventually die.
 - (1) All are correct.
 - (2) All are incorrect.
 - (3) I and V are correct.
 - (4) Only III is correct.
- **135.** Which of the following shows **correct** order of electrons in mitochondria?
 - (1) FeS \rightarrow NADH \rightarrow CoQ \rightarrow Cyt b \rightarrow FeS \rightarrow Cyt c₁ \rightarrow Cyt c \rightarrow Cyt a₃ \rightarrow O₂ \rightarrow Cyt b
 - (2) NADH \rightarrow FMN \rightarrow FeS \rightarrow CoQ \rightarrow Cyt b \rightarrow FeS \rightarrow Cyt c₁ \rightarrow Cyt c \rightarrow Cyt a \rightarrow Cyt a₃ \rightarrow O₂
 - (3) NADH \rightarrow Cyt c₁ \rightarrow Cyt c \rightarrow Cyt a \rightarrow Cyt a₃ \rightarrow O₂ \rightarrow FMN \rightarrow FeS \rightarrow CoQ \rightarrow Cyt b \rightarrow FeS
 - (4) Cyt $c_1 \rightarrow$ Cyt $c \rightarrow$ Cyt $a \rightarrow$ Cyt $a_3 \rightarrow$ NADH \rightarrow FMN \rightarrow FeS \rightarrow COQ \rightarrow Cyt $b \rightarrow$ FeS \rightarrow O₂

SECTION- B

- **136.** Which of the following is amphibolic?
 - (1) Glycolysis
 - (2) Oxidative decarboxylation of pyruvate
 - (3) TCA cycle
 - (4) Oxidative phosphorylation
- 137. Choose the correct option
 - (1) $RQ = \frac{Volume of CO_2 \text{ evolved}}{Volume of O_2 \text{ consumed}}$
 - (2) RQ depends on the types of respiratory substrates
 - (3) When fat are used in respiration the RQ is less than 1
 - (4) All
- **138.** Phosphorylation of glucose during glycolysis is catalysed by
 - (1) Phosphoglucomutase
 - (2) Phosphoglucoisomerase
 - (3) Hexokinase
 - (4) Phosphorylase
- **139.** Pyruvic acid, the key product of glycolysis can have many metabolic fates. Under aerobic condition it forms
 - (1) Lactic acid
 - $(2) \quad \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}$
 - (3) Acetyl $CoA + CO_2$
 - (4) Ethanol + CO_2
- **140.** Match the following and choose the **correct** option from those given below.

	Column I		Column II
А.	Molecular oxygen	i.	α-Ketoglutaric acid
В.	Electron acceptor	ii.	Hydrogen acceptor
C.	Pyruvate dehydrogenase	iii.	Cytochrome c
D.	Decarboxylation	iv.	Acetyl CoA

	Α	В	С	D
(1)	ii	iii	iv	i
(2)	iii	iv	ii	i
(3)	ii	i	iii	iv
(4)	iv	iii	i	ii

- **141.** In which of the following process CO₂ is **not** released?
 - (1) Aerobic respiration in plants
 - (2) Aerobic respiration in animals
 - (3) Alcoholic fermentation
 - (4) Lactate fermentation
- **142.** In which of the following reaction of glycolysis, oxidation take place?
 - (1) Glucose 6-phosphate to fructose 6-phosphate
 - (2) Fructose 6-phosphate to fructose 1, biphosphate
 - (3) 1, 3-biphosphoglycerate to 3-phosphoglyceric acid
 - (4) 3-phosphoglyceraldehyde to 1, 3 biphosphoglycerate
- **143.** Which molecule links glycolysis with fermentation as well as TCA cycle?
 - (1) Ethanol (2) Acetaldehyde
 - (3) PEP (4) Pyruvic acid
- **144.** Which of the following is the only 5-carbon compound formed during Kreb's cycle?
 - (1) Malic acid (2) Succinic acid
 - (3) Cis-aconitic acid (4) α -ketoglutaric acid
- 145. When protein is aerobically oxidised the RQ (Respiration Quotient) value will be
 - (1) One (2) Zero
 - (3) More than one (4) Less than one
- 146. Cytochromes are found in
 - (1) Cristae of mitochondria
 - (2) Lysosomes
 - (3) Matrix of Mitochondria
 - (4) Outer wall of mitochondria

- **147.** Which of the metabolites is common to respiration mediated breakdown of glycerol; carbohydrates and proteins?
 - (1) Pyruvic acid
 - (2) Acetyl CoA
 - (3) Glyceraldehyde 3-phosphate
 - (4) Pyruvic acid and Acetyl CoA
- 148. Which of the following statement is incorrect?
 - (1) During aerobic respiration, role of oxygen is limited to the terminal stage
 - (2) In ETC (Electron Transport Chain), one molecule of NADH⁺ H⁺ gives rise to 2ATP molecule and one FADH₂ gives rise to 3 ATP molecules
 - (3) ATP is synthesised through complex V
 - (4) Oxidation-reduction reactions produce proton gradient in respiration
- **149. Statement I:** Products of anaerobic respiration are ethyl alcohol and acetyl CoA.

Statement II: Energy storing compound formed during conversion of succinyl CoA to succinic acid is GTP.

- (1) If both statements are correct.
- (2) If both statement are incorrect.
- (3) If only statement I is correct.
- (4) If only statement II is correct.
- **150.** The complete oxidation of _____ by the stepwise removal of all the hydrogen atoms, leaving 3 molecules of _____.
 - (1) Pyruvate, CO₂
 - (2) Pyruvate, O₂
 - (3) Acetyl CoA, N₂
 - (4) Acetate, O_2

(ZOOLOGY)

SECTION - A

- 151. Sella turcica is
 - (1) Endocrine gland
 - (2) Cavity in ethamoid bone containing hypothalamus
 - (3) Cavity in sphenoid bone containing pituitary gland
 - (4) Cavity of skull containing eye
- **152.** Which is a hypothalamic hormone stored in posterior pituitary?
 - (1) LH (2) GnRH
 - (3) GHRH (4) Oxytocin

- **153.** A neuron is depolarised when it aquires.
 - (1) Negative charge on inside and positive charge outside
 - (2) Positive charge on inside and negative charge outside.
 - (3) Positive charge on both the sides
 - (4) Negative charge on both sides
- **154.** Control of body temperature in the body of man is done by
 - (1) Skin (2) Diencephalon
 - (3) Hypothalamus (4) Pituitary

- 155. As Statement based question: Statement-1: Limbic system contains amygdala
 Statement-2: Brainstem contains cerebrum, diencephalon and Pons
 - (1) Both statements (1) and (2) are correct
 - (2) Statement (1) is correct, but (2) is incorrect
 - (3) Statement (1) is incorrect, but (2) is correct
 - (4) Both statements (1) and (2) are incorrect
- **156.** Which is a steroid hormone?
 - (1) Insulin
 - (2) Epinephrine
 - (3) Cortisol
 - (4) Glucagon
- 157. Catecholamines are secreted by
 - (1) Adrenal gland
 - (2) Thyroid gland
 - (3) Pituitary gland
 - (4) Testes
- 158. Pineal gland is found in or near
 - (1) Trachea
 - (2) Abdominal Cavity
 - (3) Attached to back side of thyroid gland
 - (4) on the dorsal side of forebrain

159. Assertion and Reason: -

Assertion: - In case of very high calcium levels in blood parathyroid gland secretes parathormone **Reason:** - Parathormone decreases blood calcium levels

- (1) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
- (2) Both Assertion and Reason are true and the Reason is not the correct explanation of the Assertion.
- (3) Assertion is true but Reason is false.
- (4) Both Assertion and Reason are false.
- **160.** A child is mentally retarded, dwarf, suffers from deafness and mutism is suffering from
 - (1) Myxoedema
 - (2) Cretinism
 - (3) Grave's disease
 - (4) Acromegaly
- **161.** What is the role of schwann cell?
 - (1) Secrete melatonin hormone
 - (2) Forms Nissl's granules
 - (3) Forms myelin sheath in CNS
 - (4) Forms myelin sheath in PNS

162. Analyse the diagram and fill in the blanks

- (1) B = Spinal cord; A = PNS, C = SNS
- (2) B = pinal cord; A = SNS, C = PNS
- (3) B = SNS; A = Spinal; C = Sympathetic nerves cord
- (4) B = spinal cord; D = Sympathetic nerves; A = Parasympathetic nerves
- 163. Nissl's granule contains
 - (1) ER + Golgi complex
 - (2) ER + Mitochondria
 - (3) RER
 - (4) ER + Nucleus
- 164. Corpora quadrigemina are _X_ in number and associated with _Y_
 - (1) X = 1; Y = Pons
 - (2) X = 4; Y = Cerebrum
 - (3) X = 3; Y = Medulla
 - (4) X = 4; Y = Midbrain
- 165. Which hormone is secreted by corpus luteum?
 - (1) Testosterone
 - (2) Cortisol
 - (3) Aldosterone
 - (4) Progesterone
- **166.** A person has high blood sugar level which can be due to
 - (1) Low T₄ levels
 - (2) High cortisol levels
 - (3) Low glucagon levels
 - (4) Low cortisol levels
- **167.** Male sexual behaviour (libido) and aggressiveness along with low pitched voice can be attributed to
 - (1) FSH
 - (2) Progesterone
 - (3) Androgens
 - (4) Estradiol

168. Match the column A and column B and select the correct option

	Column A		Column B	
(i)	Association area	a	Pneumotaxic centre	
(ii)	Pons	b	Supra optic nuclei	
(iii)	Hypothalamus	c	Gastric secretions	
(iv)	Medulla	d	Communication	
		e	Vision	
(1)	i-d ii-a iii-	b	iv-c	
(2) i-a ii-d iii-		c	iv-e	
(3)	i-b ii-a iii-	e	iv-d	
(4)	i-c ii-b iii-	a	iv-d	

- 169. Which is incorrect about hormones?
 - (1) Non-nutrient chemicals
 - (2) Intracellular messengers
 - (3) Produced by endocrine gland
 - (4) Produced in trace amounts
- **170.** Which hormone helps in reabsorption of H_2O from late DCT or collecting duct into blood?
 - (1) LH
 - (2) ACTH
 - (3) Vasopressin
 - (4) Oxytocin
- **171.** During mid of menstrual cycle which hormone leads to rupture of graffian follicle and ovulation
 - (1) LH
 - (2) FSH
 - (3) Estrogen
 - (4) Progesterone
- **172.** Which hormone helps in vigorous contraction of uterus leading to child birth?
 - (1) Estrogen (2) Progesterone
 - (3) Vasopressin (4) Oxytocin
- **173.** A 90 year old man gets repeated bacterial and uiral infections, it can be due to
 - (1) Non production of melatonin
 - (2) Thymus is degenerated in old age
 - (3) Thyroid gland is hyperactive in old age
 - (4) Aldosterone is high in concentration in old age
- **174.** A person having injured hippocampus may have problems related to
 - (1) Sexual behavior
 - (2) Vision
 - (3) May have poor long term memory
 - (4) Intersensory association

- 175. Statement based question: -Statement-1: Cerebral aqueduct is a canal that passes through midbrain Statement-2: Hypothalamus is responsible for voluntary motor function

 (1) Both statements (1) and (2) are correct
 - (1) Dour statements (1) and (2) are correct(2) Statement (1) is correct, but (2) is incorrect
 - (2) Statement (1) is correct, but (2) is incorrect(3) Statement (1) is incorrect, but (2) is correct
 - (4) Both statements (1) and (2) are incorrect
- **176.** Which hormone needs I_2 for its formation?
 - (1) Tetraiodothyronine
 - (2) Thyrocalcitonin
 - (3) LH
 - (4) GH
- 177. Diabetes insipidus is caused by
 - (1) Non-secretion of Insulin
 - (2) Non-secretion of Glucagon
 - (3) Non-secretion of ADH
 - (4) Non-secretion of GH
- **178.** Which hormone helps in regulation of 24 hours (diurnal) rhythm of our body, managing sleep-wake cycle?
 - (1) Melanin (2) Melatonin
 - (3) MSH (4) Thymosin
- **179.** Protrusion or bulging out of eyeballs, increased BMR and weight loss is associated with
 - (1) Acromegaly
 - (2) Cretenism
 - (3) Grave's disease
 - (4) Addison's disease
- **180.** Urge for eating and drinking water is associated to
 - (1) Hippocampus
 - (2) Hypothalamus
 - (3) Medulla
 - (4) Cerebellum
- **181.** A person has broken dorsal horn of spinal cord, he may have lost
 - (1) Sensory functioning
 - (2) Motor functioning
 - (3) Control over breathing specially inspiration"
 - (4) All memories
- 182. Which is part of Metencephalon: -
 - (1) Pons and Medulla
 - (2) Cerebrum and Thalamus
 - (3) Cerebellum and Pons
 - (4) Medulla and cerebellum
- **183.** Which hormone may increase bone calcium and reduce blood calcium levels?
 - (1) T_3 (2) FSH
 - (3) Thyrocalcitonin (4) Epinephrine

- **184.** Which hormone may lead to increase in heart beat, breakdown of glycogen, erection or raising of body hairs?
 - (1) Cortisol (2) Aldosterone
 - (3) Testosterone (4) Adrenaline
- **185.** Which hormone acts on hepatocytes and adipocytes?
 - (1) LH (2) Estrogen
 - (3) Prolactin (4) Insulin

SECTION-B

- **186.** Under production of hormones of Adrenal Care cortex may lead to
 - (1) Acromegaly
 - (2) Diabetes mellitus
 - (3) Myxoedema
 - (4) Addison's disease
- **187.** Depolarisation from -55mv to +30mV is due to
 - (1) Opening of voltage gated K^+ channel
 - (2) Clossing of voltage gated Na^+ channel
 - (3) Opening of voltage gated Na⁺ channel
 - (4) Opening of voltage gated Cl⁻ channels
- 188. Which hormone helps in reabsorption of Na⁺ and H₂O from filtrate into blood and excretion of K⁺ ions in urine?
 - (1) ADH (2) Cortisol
 - (3) Aldosterone (4) Insulin
- **189.** Glycosuria and ketonuria is associated with
 - (1) Diabetes insipidus
 - (2) Diabetes mellitus
 - (3) Acromegaly
 - (4) Cretinism
- **190.** Which hormone supports pregnancy and stimulates formation of alveoli in mammary glands?
 - (1) Prolactin
 - (2) Oxytocin
 - (3) Estrogen
 - (4) Progesterone
- **191.** Which hormone stimulates leydig cells of testis?
 - (1) FSH (2) ICSH
 - (3) ACTH (4) GH

192. Assertion and Reason: -

Assertion: Addison's disease in a man may lead to high blood sugar levels

Reason: Addison's disease is due to hypersecretion of cortisol

- (1) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
- (2) Both Assertion and Reason are true and the Reason is not the correct explanation of the Assertion.
- (3) Assertion is true but Reason is false.
- (4) Both Assertion and Reason are false.
- 193. Which is a second messenger?
 - (1) HCO_{3}^{-}
 - (2) Ca^{+2}
 - (3) Na⁺
 - (4) K⁺

194. Erythropoietin is secreted by

- (1) Liver
- (2) Kidney
- (3) Brain
- (4) Heart
- 195. Assertion and Reason: -

Assertion: - A man with a disfigured face may have gigantism

Reason: - Gigantism is due to hypersecretion of T₃

- (1) Both Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
- (2) Both Assertion and Reason are true and the Reason is not the correct explanation of the Assertion.
- (3) Assertion is true but Reason is false.
- (4) Both Assertion and Reason are false.
- **196.** Which hormone does not produce second messenger?
 - (1) Aldosterone
 - (2) FSH
 - (3) Adrenaline
 - (4) Insulin

197. Statement based question: -

Statement-1: Estrogen causes appearance of female secondary sex characters and female sexual behaviour

Statement-2: FSH stimulates development of follicles in pancreas

- (1) Both statements (1) and (2) are correct
- (2) Statement (1) is correct, but (2) is incorrect
- (3) Statement (1) is incorrect, but (2) is correct
- (4) Both statements (1) and (2) are incorrect
- **198.** Receptor sites for neurotransmitters are present on
 - (1) Membranes of synaptic vesicles
 - (2) Pre synaptic membrane.
 - (3) Tips of axons
 - (4) Post synaptic membrane

- **199.** Which part of brain has very convoluted surface in order to provide additional space for neurons?
 - (1) Pons (2) Medulla
 - (3) Cerebellum (4) Midbrain
- **200.** Hormone of anterior pituitary that does not stimulate another endocrine gland is
 - (1) ACTH (2) FSH
 - (3) TSH (4) GH

Solution

Glycolysis occurs in the cytosol and produce pyruvate which in the presence of O_2 enters the mitochondria.

NCERT Page No. 228-231

103. (4)

Pyruvic acid is the end product of glycolysis.

NCERT Page No. 229

104. (4)

All of them are reason why plant can get along without respiratory organs.

NCERT Page No. 226

105. (3)

During the glycolysis breakdown of one glucose molecule, zero molecules of O_2 are used and zero molecules of CO_2 comes out.

NCERT Page No. 228-229

106. (3)

During glycolysis for each mole of glucose oxidised to pyruvate 2 moles of ATP are used and 4 moles of ATP are produced.

NCERT Page No. 229

107. (4)

In the absence of O_2 , cells capable of fermentation oxidise NADH to produce NAD⁺.

NCERT Page No. 230-231

108. (1)

In Alcoholic fermentation, NAD⁺ is produced during the reduction of acetaldehyde to ethanol. NCERT Page No. 230

TOERT Lage 100.

109. (1)

The result of first five reactions of the glycolytic pathway are adding phosphate modifying sugars and forming 3PGAld.

NCERT Page No. 229

110. (1)

Fermentation takes place under anaerobic conditions in many prokaryotes and unicellular eukaryotes.

NCERT Page No. 230

111. (4)

The main purpose of cellular respiration is to convert energy stored in the chemical bonds of glucose to energy that the cell can use.

NCERT Page No. 227

112. (4)

If O_2 is not present yeast cells break down glucose to C_2H_5OH and CO_2 .

NCERT Page No. 230-231

- 113. (1)
 - **A.** NAD⁺ **B.** Ethanol
 - C. Lactic Acid

NCERT Page No. 230

114. (1)

The above reaction involves enzyme pyruvate decarboxylase and alcohol dehydrogenase.

NCERT Page No. 230-231

115. (4)

All the statement are true.

NCERT Page No. 230-231

116. (4)

Reaction involves in option (1) and (2) in glycolysis ATP is synthesized.

NCERT Page No. 229

117. (2)

In Kreb's cycle, the first product is citric acid which is a 6-C compound. It is formed by a condensing irreversible reaction between OAA and acetyl coenzyme A.

NCERT Page No. 232

118. (1)

In Kreb's cycle 4 oxidation reaction occurs.

NCERT Page No. 232

119. (1)

In Kreb's cycle Acetyl coenzyme A undergoes 4 oxidation and 2 decarboxylation.

NCERT Page No. 231-232

120. (1)

At the end of the Kreb's cycle most of energy removed from glucose molecules is transferred to NADH + $H^+/FADH + H^+$.

NCERT Page No. 232

121. (4)

Option (4) correctly describes relationship between the kreb's cycle and electron transport pathway.

NCERT Page No. 231-232

122. (2)

At the end of Kreb's cycle, but before the electron transport chain, the oxidation of glucose produced a net gain of 6CO₂, 10NADH₂, 2FADH₂, 4ATP. NCERT Page No. 232

123. (3)

In oxidative phosphorylation CO₂ is not released. NCERT Page No. 233

124. (1)

First reaction of Kreb's cycle i.e. condensation of acetyl group with OAA and water is catalysed by citrate synthetase enzyme.

NCERT Page No. 231

125. (4)

In cellular respiration, water is produced as a result of reduction of O_2 at the end of electron transport chain.

NCERT Page No. 233

126. (1)

The main purpose of electron transport chain is to cycle NADH + H^+ back to NAD⁺.

NCERT Page No. 232-234

127. (4)

Terminal e⁻ acceptor of e⁻ transport is O₂. NCERT Page No. 233

128. (1)

Both the statements are correct. NCERT Page No. 231-232

129. (4)

During passage of electron over ETC, pH of matrix increases.

NCERT Page No. 232-234

130. (1)

Both assertion and reason are true and the reason is the correct explanation of the assertion.

NCERT Page No. 234-235

131. (1)

Both assertion and reason are true and the reason is the correct explanation of the assertion.

NCERT Page No. 231

132. (2)

The e⁻ carrier molecules and cytochrome transfer electron between the electron carrier complexes. NCERT Page No. 233

133. (2)

The oxidation of a molecule of FADH₂ yield less ATP and a molecule of NADH₂ yields 3ATP but FADH₂ yields only 2 ATP because it passes its electrons to a transport molecule later in the chain at a lower level.

NCERT Page No. 232-234

134. (1)

All the statements are correct. NCERT Page No. 232-234

135. (2)

 $NADH \rightarrow FMN \rightarrow FeS \rightarrow CoQ \rightarrow Cyt b \rightarrow FeS$ $\rightarrow Cyt c_1 \rightarrow Cyt c \rightarrow Cyt a \rightarrow Cyt a_3 \rightarrow O_2$ NCERT Page No. 233

136. (3)

TCA cycle is Amphibolic pathway. NCERT Page No. 235

137. (4)

All of these are correct statements.

NCERT Page No. 236-237

138. (3)

Phosporylation of glucose during glycolysis is catalysed by hexokinase.

NCERT Page No. 229

139. (3)

Pyruvic acid, under aerobic condition forms $Acetyl CoA + CO_2$.

NCERT Page No. 231-232

140. (1)

A.	Molecular	ii.	Hydrogen
	oxygen		acceptor
B.	Electron acceptor	iii.	Cytochrome C
C.	Pyruvate dehydrogenase	iv.	Acetyl CoA
D.	Decarboxylation	i.	α-Ketoglutaric acid

NCERT Page No. 231-234

141. (4)

In Lactate fermentation CO₂ is not released. NCERT Page No. 230

142. (4)

3-phosphoglyceraldehyde \rightarrow 1, 3 biphosphoglycerate in this step oxidation takes place.

NCERT Page No. 229

143.	(4) Pyruvic acid links glycolysis with fermentation as well as TCA cycle	
	NCERT Page No. 231	148.
144.	(4) α -ketoglutaric acid is the 5-C compound formed	
	during Kreb's cycle.	
	NCERT Page No. 232	140
145.	(4) When protein in aerobically oxidised then RQ will be less than one. NCERT Page No. 236-237	149.
	C C	150.
146.	(1) Cytochromes are found in cristae of mitochondria.	
	NCERT Page No. 232-233	
147.	(4)	
	(ZOO	LOGY)

Pyruvic acid and acetyl Co-A are the common metabolites in respiration mediated breakdown of glycerol, carbohydrates and proteins.

NCERT Page No. 236

(2)

In ETC (Electron Transport Chain), one molecule of NADH2 gives rise to 3ATP and 1 FADH2 gives rise to 2 ATP.

NCERT Page No. 231-234

(4)

Products of anaerobic respiration are ethyl alcohol and lactic acid.

NCERT Page No. 230-232

(1)

The complete oxidation of pyruvate by the stepwise removal of all hydrogen atoms, leaving three molecule of CO₂.

NCERT Page No. 231

151.	(3)	NCERT 11 th Page No. 241	161. (4)	NCERT 11 th Page No. 232
152.	(4)	NCERT 11 th Page No. 241	162. (1)	NCERT 11 th Page No. 230
153.	(2)	NCERT 11 th Page No. 233	163. (3)	NCERT 11 th Page No. 231
154.	(3)	NCERT 11 th Page No. 236	164. (4)	NCERT 11 th Page No. 234
155.	(2)	NCERT 11 th Page No. 236	165. (4)	NCERT 11 th Page No. 241
156.	(3)	NCERT 11 th Page No. 248	166. (2)	NCERT 11 th Page No. 241
157.	(1)	NCERT 11 th Page No. 244	167. (3)	NCERT 11 th Page No. 246
158.	(4)	NCERT 11 th Page No. 242	168. (1)	NCERT 11 th Page No. 234
159.	(4)	NCERT 11 th Page No. 242	169. (2)	NCERT 11 th Page No. 240
160.	(2)	NCERT 11 th Page No. 241	170. (3)	NCERT 11 th Page No. 242

171.	(1) NO	CERT 11 th Page No. 246	187.	(3)	NCERT 11 th Page No. 234
172.	(4) NO	CERT 11 th Page No. 246	188.	(3)	NCERT 11 th Page No. 244
173.	(2)	CERT 11 th Page No. 242	189.	(2)	NCERT 11 th Page No. 245
174.	(3) NO	CERT 11 th Page No. 234	190.	(4)	NCERT 11 th Page No. 246
175.	(2)	CERT 11 th Page No. 234	191.	(2)	NCERT 11 th Page No. 246
176.	(1) NG	CERT 11 th Page No. 242	192.	(4)	NCEDT 11th Darrow No. 244
177.	(3)	CERT 11 th Page No. 245	193.	(2)	NCERT II ^{III} Page No. 244
178.	(2)	ERT 11 th Page No. 242	194.	(2)	NCERT 11 th Page No. 248
179.	(3)	TERT 11 th Page No. 2/1	195.	(4)	NCERT 11 th Page No. 240
180.	(2)		196		NCERT 11 th Page No. 241
181.	(1)	CERT 11 th Page No. 234	190.	(1)	NCERT 11 th Page No. 244
182.	(3)	CERT 11 th Page No. 236	197.	(2)	NCERT 11 th Page No. 246
102	NO (2)	CERT 11 th Page No. 236	198.	(4)	NCERT 11 th Page No. 232
183.	(3) N(CERT 11 th Page No. 242	199.	(3)	NCERT 11 th Page No. 236
184.	(4) NO	CERT 11 th Page No. 244	200.	(4)	NCERT 11 th Page No. 244
185.	(4) NO	CERT 11 th Page No. 245			
186.	(4) NO	CERT 11 th Page No. 244			
]		