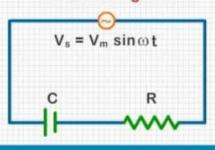
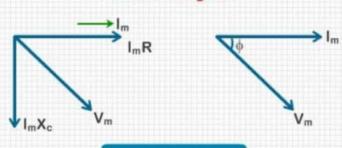


-ALTERNATING CURRENT


It is the movement of electrical charge through a medium that changes direction periodically

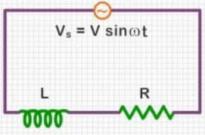
1 SUMMARY

AC SOURCE CONNECTED WITH	PHASE	PHASE DIFFERENCE	IMPEDANCE Z	PHASOR DIAGRAM
Pure Resistor	0	V _R is in same phase with i _R	R	$\xrightarrow{V_{m}}$
Pure Inductor	$\frac{\pi}{2}$	V _L leads i _L by 90°	XL	V _m
Pure Capacitor	$-\frac{\pi}{2}$	V _c lags i _c by 90⁰	Xc	V _m V _m

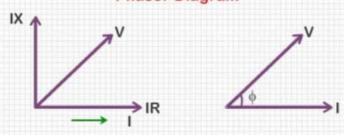

2 RC SERIES CIRCUIT WITH AN AC SOURCE

Circuit Diagram

$$I_m = -\frac{V_m}{\sqrt{R^2 + X_c^2}} \Rightarrow Z = \sqrt{R^2 + X_c^2}$$


Phasor Diagram

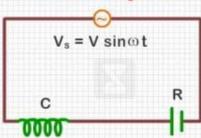
$$\tan \phi = \frac{I_m X_c}{I_m R} = \frac{X_c}{R}$$


3 IR SERIES CIRCUIT WITH AN AC SOURCE

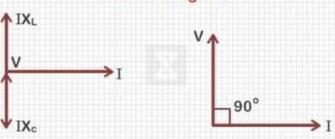
Circuit Diagram

$$V = I\sqrt{R^2 + X_L^2}$$

Phasor Diagram

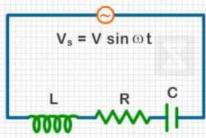


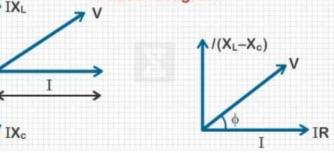
$$\tan \phi = \frac{IX_L}{IR} = \frac{X_L}{R}$$


Part II

LC SERIES CIRCUIT WITH AN AC SOURCE

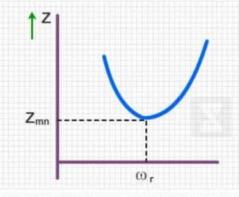
Circuit Diagram

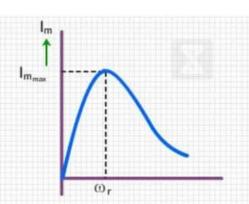

Phasor Diagram


From the phasor diagram $V = I |(X_L - X_c)| = IZ$, $\phi = 90^\circ$

RLC SERIES CIRCUIT WITH AN AC SOURCE

Circuit Diagram




Phasor Diagram

From the phasor diagram
$$V = \sqrt{(IR)^2 + (IX_L - IX_c)^2}$$
, $Z = \sqrt{R^2 + (X_L - X_c)^2}$
$$tan\phi = \frac{I(X_L - X_c)}{IR} = \frac{(X_L - X_c)}{R}$$

RESONANCE

Amplitude of current (and therefore Irms also) in an RLC series circuit is maximum for a given value of V_m and R, if the impedance of the circuit is minimum, which will be when $X_L-X_C = 0$. This condition is called resonance.

So at resonance:
$$X_L - X_C = 0 \implies \omega = \frac{1}{\sqrt{LC}}$$