Chemical Bonding and Molecular Structure

Multiple Choice Questions (MCQs)

Q. 1	Isostructural	species	are	those	whic	h have	the	same	shape	and
	hybridisation.	Among	the	given s	pecies	identify	the	isostru	ctural p	airs.

(a) [NF₃ and BF₃]

(b) $[BF_4^- \text{ and } NH_4^+]$

(c) [BCl₃ and BrCl₃]

(d) $[NH_3 \text{ and } NO_3^-]$

Ans. (b)

- (a) NF₃ is pyramidal whereas BF₃ is planar triangular.
- (b) ${\rm BF_4^-}$ and ${\rm NH_4^+}$ ion both are tetrahedral and ${\it sp}^3$ hybridisation.
- (c) BCl_3 is triangular planar whereas BrCl_3 is T shaped.
- (d) NH₃ is pyramidal whereas NO₃ is triangular planar.

Q. 2 Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule. Which of the following has the highest dipole moment?

(d) SO_2

Ans. (c) CO₂ being symmetrical has zero dipole moment

$$0 \stackrel{\longleftarrow}{=} 0$$

$$\mu = 0$$

Among HI, SO₂ and H₂O dipole moment is highest for H₂O as in it the central atom contains 2 lone pairs.

$$H \stackrel{\longrightarrow}{=} I$$

 $\mu = 0.38D$

 μ = 1.84 D μ = 1.62 D

 \mathbf{Q} . 3 The types of hybrid orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are expected to be

(a) sp, sp^3 and sp^2 (c) sp^2 , sp and sp^3

(b) sp, sp^2 and sp^3

- (d) sp^2 . sp^3 and sp
- Ans. (b) The type of hybrid orbitals of nitrogen can be decided by using VSEPR theory counting bp and as lp in

 $NO_2^+ = 2 bp + 0 lp = linear = sp hybridised$

 $NO_3^- = 3 bp + 0 lp \Rightarrow sp^2$ hybridised

 $NH_4^+ = 4 bp + 0 lp \Rightarrow sp^3$ hybridised

 \mathbf{Q} . 4 Hydrogen bonds are formed in many compounds e.g., $\mathbf{H}_2\mathbf{O}$, HF, \mathbf{NH}_3 . The boiling point of such compounds depends to a extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points above compounds is

(a) $HF > H_2O > NH_3$

(b) $H_2O > HF > NH_3$

(c) $NH_3 > HF > H_2O$

- (d) $NH_3 > H_2O > HF$
- Ans. (b) Strength of H-bond is in the order H....F > H.....O > H.....N.

But each H₂O molecule is linked to four other H₂O molecules through H-bonds whereas each HF molecule is linked only to two other HF molecules.

Hence, b.p of $H_2O > b.p$ of HF > b.p. of NH_3

 \mathbf{Q} . 5 In PO₄³⁻ ion the formal charge on the oxygen atom of P—0 bond is

- (d) + 0.75

Ans. (c) In PO₄³-ion, formal charge on each O-atom of P—O bond
$$= \frac{\text{total charge}}{\text{Noumber of O-atom}} = -\frac{3}{4} = -0.75$$

 \mathbf{Q} . 6 In NO $_3^-$ ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are

(a) 2, 2

- (b) 3, 1
- (c) 1, 3
- (d) 4, 0

Thinking Process

To solve this question, we must know the structure of NO₃ ion i.e.,

$$\begin{bmatrix} : \ddot{O}: \\ | \\ \ddot{O} = \ddot{N} - \ddot{O}: \end{bmatrix}$$

Then, count the bond pairs and lone pairs of electron on nitrogen.

Ans. (d) In N-atom, number of valence electrons = 5

Due to the presence of one negative charge, number of valence electrons = 5 + 1 = 6one O-atom forms two bond (= bond) and two O-atom shared with two electrons of N-atom

Thus, 3 O-atoms shared with 8 electrons of N-atom.

.. Number of bond pairs (or shared pairs) = 4

Number of lone pairs = 0

\mathbf{Q} . **7** Which of the following species has tetrahedral geometry?

(a) BH_{4}^{-}

(b) NH_{2}^{-}

(c) CO_3^{2-}

Ans. (a) $BH_4^- \Rightarrow 4$ bond pairs + 0 lone pair $\Rightarrow sp^3$ hybridised = tetrahedral geometry

 $NH_2^- = V - shape$

 CO_3^{2-} = triangular planar

 H_3O^+ = pyramidal

$\mathbf{Q}_{m{\cdot}}$ $\mathbf{8}$ Number of π bonds and σ bonds in the following structure is

(a) 6, 19

(b) 4, 20

(c) 5, 19

(d) 5, 20

Ans. (c) The given compound will have the correct structure as

There are 5 π -bonds and 8 C — H + 11 C — C σ -bonds, *i.e.*, 19 σ -bonds are present in the above molecule.

$\mathbf{Q.9}$ Which molecule/ion out of the following does not contain unpaired electrons?

(a) N_2^+

(b) O_2

(c) O_2^{2-}

(d) B_2

Ans. (c) The electronic configuration of the given molecules are $N_2^+ = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 = \pi p_y^2$, $\sigma 2p_z^1$

$$N_2^+ = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2 = \pi p_y^2, \sigma 2p_z^1$$

It has one unpaired electron.

$$\mathsf{O}_2 = \sigma \mathsf{1s}^2, \sigma^* \mathsf{1s}^2, \sigma 2 \mathsf{s}^2, \ \sigma^* \ 2 \mathsf{s}^2, \sigma 2 \rho_z^2, \ \pi 2 \rho_x^2 \approx \pi 2 \rho_y^2, \pi^* \ 2 \rho_x^1 \approx \pi^* \ 2 \rho_y^1$$

O₂ has two unpaired electrons.

$$O_2^{2-} = \sigma 1 s^2, \sigma^{\star} \ 1 s^2, \ \sigma 2 s^2, \sigma^{\star} \ 2 s^2, \sigma 2 \rho_z^2, \pi 2 \rho_z^2 \approx \pi 2 \rho_y^2, \pi^{\star} \ 2 \rho_x^2 \approx \pi^{\star} \ 2 \rho_y^2$$

Thus, O_2^{2-} has no unpaired electrons.

$$B_2 = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2\rho_x^1 \approx \pi_2 \rho_y^1$$

Thus, B₂ has two unpaired electrons.

Q. 10 In which of the following molecule/ion all the bonds are not equal?

(a) XeF₄

(b) BF₄

(c) C₂H₄

(d) SiF₄

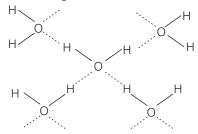
Ans. (c) $XeF_4 \Rightarrow 4 bp + 2 p \Rightarrow square planar \Rightarrow all bonds are equal <math>BF_4^- \Rightarrow 4 bp + 0 p \Rightarrow tetrahedral$ (all bonds are equal)

 $C_2H_4 \Rightarrow H C = C C_H \Rightarrow C = C$ bond is not equal to C—H bond

 $\mathrm{SiF_4}$ \Rightarrow 4 bp + 0 lp \Rightarrow tetrahedral (all bonds are equal)

Thus, in C₂H₄ all the bonds are not equal.

Q. 11 In which of the following substances will hydrogen bond be strongest?


(a) HCl

(b) H_2O

(c) HI

(d) H_2S

Ans. (b) HCl, HI and H₂S do not from H-bonds. Only H₂O forms hydrogen bonds. One H₂O molecule forms four H-bonding.

Q. 12 If the electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$, the four electrons involved in chemical bond formation will be

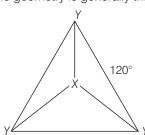
(a) $3p^6$

(b) $3p^6$, $4s^2$

(c) $3p^6$, $3d^2$

(d) $3d^2$, $4s^2$

- **Ans.** (d) The given electronic configuration shows that an element is vanadium (Z=22). It belongs to d-block of the periodic table. In transition elements *i.e.*, d-block elements, electrons of ns and (n-1)d subshell take part in bond formation.
- **Q.** 13 Which of the following angle corresponds to sp^2 hybridisation?


(a) 90°

(b) 120°

(c) 180°

(d) 109°

Ans. (b) For sp^2 hybridisation, the geometry is generally triangular planar.

Thus, bond angle is 120°.

									A, B and C are infigurations.
8	Α		2s ²						.,,.8
					3s ²	$3p^3$			
	C	1s ²	2s ²	2p ⁶ 2p ⁶	3s ²	$3p^5$			
	Ü	.0		_p	00	o _l o			
Q. 14				-	eprese	nted by the	formul		
	(a) A			(b) A_2		(c) A_3		(d) A_4	
Ans. (a)						ows that A re 10 atomic nu		noble	gas because the
Q. 15	Stabl	e form	of C m	ay be r	epresei	nted by the	formul	a	
	(a) C	,		(b) C ₂		(c) C_3		(d) C_4	
Ans. (b)	The 6 <i>i.e.</i> , C		c config	uration o	f C repre	esent chlorine	. Its stabl	e form	is dichlorine (Cl ₂)
0. 16	The n	nolecul	ar forn	nula of	the co	mpound for	med fro	m B a	and C will be
~	(a) B			(b) <i>B</i> ₂ <i>C</i>		(c) BC_2		(d) BC	
Ans. (d)						t <i>B</i> represent I is PCI ₃ <i>i.e., E</i>		orus a	and C represents
Q. 17	The b	ond be	etween	B and	C will h	oe			
	(a) ic			(b) coval		(c) hydrog	gen	(d) co	ordinate
Ans. (b)						covalent. Both sent chlorine.	n B and (C are ı	non-metal atoms.
			e follo	wing o	der of	energies of	molecu	ılar or	bitals of N_2 is
	corre			. *	. *				
		/	_	$(\pi^* 2p_x) \approx$. /				
		- /		$(\pi^* 2p_x) \approx (\pi^* 2p_x) \approx$	/				
		,		$(\pi^2 p_x) \sim (\pi^* 2p_x) \approx$					
$\Delta ns(a)$,			,	ies of molec	ular orbit	als of N	N ₂ is given below
Alis. (%)						$(2p_y) < \sigma 2p_z$			
Q. 19	Whic!	h of th	e follo	wina st	atemer	it is not coi	rect fro	m the	view point of
				theory?					1
				e molecu					
	(b) He_2 is not stable but He_2^+ is expected to exist.								

(c) Bond strength of N_2 is maximum amongst the homonuclear diatomic molecules belonging to the second period.

(d) The order of energies of molecular orbitals in N_2 molecule is $\sigma 2s < \sigma^* 2s < \sigma 2p_{\tau} < (\pi 2p_{\nu} \simeq \pi 2p_{\nu}) < (\pi^* 2p_{\nu} \simeq \pi^* 2p_{\nu}) < \sigma^* 2p_{\tau}$

- **Ans.** (d) Existance of molecule, bonding nature and energy order of molecular orbitals can be explained on the basis of molecular orbital theory as follows
 - (i) Molecules having zero bond order never exists while molecular having non-zero bond order is either exists or expected to exist.
 - (ii) Higher the value of bond order, higher will be its bond strength.

Electrons present in bonding molecular orbital are known as bonding electrons (N_b) and electrons present on anti-bonding molecular orbital are known as anti-bonding electrons (N_a) and half of their difference is known as bond order

(a) Be₂
$$(4 + 4 = 8) = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 1s^2$, $\sigma^* 2s^2$

Bond order (BO) =
$$\frac{1}{2}$$

[Number of bonding electrons (N_b) – Number of anti-bonding electrons N_a]

$$=\frac{4-4}{2}=0$$

Here, bond order of Be₂ is zero. Thus, it does not exist.

(b) He₂
$$(2 + 2 = 4) = \sigma 1s^2$$
, $\sigma^* 1s^2$

$$BO = \frac{2-2}{2} = 0$$

Here, bond order of Be $_2$ is zero. Hence, it does not exist. He $_2^+$ (2 + 2 - 1 = 3) = σ 1s 2 , σ^* 1s 1

$$He_2^+$$
 (2 + 2 - 1 = 3) = $\sigma 1s^2$, $\sigma^* 1s^1$

$$BO = \frac{2-1}{2} = 0.5$$

Since, the bond order is not zero, this molecule is expected to exist.

(c)
$$N_2 (7 + 7 = 14) = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_X^2 \approx \pi 2p_V^2, \sigma 2p_Z^2$$

BO =
$$\frac{10-4}{2}$$
 = 3

Thus, dinitrogen (N2) molecule contain triple bond and no any molecule of second period have more than double bond. Hence, bond strength of N₂ is maximum amongst the homonuclear diatomic molecules belonging to the second period.

(d) It is incorrect. The correct order of energies of molecular orbitals in N₂

$$\sigma 2s < \sigma^* 2s < (\pi 2p_r \simeq \pi 2p_v) < \sigma 2p_z < \pi^* 2p_r \approx \pi^* 2p_v < \sigma^* 2p_z$$

Q. 20 Which of the following options represents the correct bond order?

$$\text{(a) } O_2^- > O_2 > O_2^+ \qquad \text{(b) } O_2^- < O_2 < O_2^+ \qquad \text{(c) } O_2^- > O_2 < O_2^+ \qquad \text{(d) } O_2^- < O_2 > O_2^+$$

Thinking Process

To calculate bond order, write the molecular orbital configuration of particular species and afterwards using the formula.

Bond order = $\frac{1}{2}$ [Number of bonding electrons (N_b)– Number of anti-bonding electrons (N_a)

Ans. (b) Electronic configuration of O_2 (16 electrons)

=
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2\rho_z^2$, $\pi 2\rho_x^2 \approx \pi 2\rho_y^2$, $\pi^* 2\rho_x^1 \approx \pi^* 2\rho_y^1$

Bond order =
$$\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 6) = 2$$

Electronic confiquration of O₂⁺ (15 electrons)
$$= \sigma 1s^2, \ \sigma^* 1s^2, \ \sigma 2s^2, \ \sigma^* 2s^2, \ \sigma 2\rho_z^2, \ \pi 2\rho_x^2 \approx \pi 2\rho_y^2, \ \pi^* 2\rho_x^1 \approx \pi^* 2\rho_y^0$$

Bond order =
$$\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 5) = 2.5$$

Electronic configuration of
$$O_2^-$$
 (17 electrons)
= $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma^2 2s^2$, $\sigma^* 2s^2$, $\sigma^2 2\rho_z^2$, $\sigma^2 2\rho_x^2 \approx \pi^2 2\rho_y^2$, $\sigma^* 2\rho_x^2 \approx \pi^2 2\rho_y^2$

Bond order =
$$\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 7) = 1.5$$

Thus, the order of bond order is $O_2^- < O_2 < O_2^+$

Q. 21 The electronic configuration of the outer most shell of the most electronegative elements is

(a)
$$2s^2 2p^5$$

(b)
$$3s^23p^5$$

(c)
$$4s^24p^5$$

(d)
$$5s^25p^5$$

Ans. (a) The electronic configuration represents

$$2s^22p^5$$
 = fluorine = most electronegative element

$$3s^23p^5$$
 = chlorine

$$4s^2 4p^5$$
 = bromine

$$5s^25p^5 = iodine$$

Q. 22 Amongst the following elements whose electronic configuration are given below, the one having the highest ionisation enthaply is

(a) [Ne]
$$3s^23p^1$$

(b) [Ne]
$$3s^23p^3$$

(c) [Ne]
$$3s^23p^2$$

(d) [Ar]
$$3d^{10}4s^24p^3$$

Ans. (b) The electronic configuration of options (b) and (d) have exactly half-filled 3p orbitals (b) represents phosphorus and (c) represents arsenic but (b) is smaller in size than (d). Hence, (b) has highest ionisation enthalpy. Ionisation enthalpy increases left to right in the periodic table as the size decreases.

Multiple Choice Questions (More Than One Options)

 \mathbf{Q} . **23** Which of the following have identical bond order?

(c)
$$O_2^-$$

(d)
$$O_2^{2-}$$

Ans. (a, b)

$$CN^-$$
 (number of electrons = $6 + 7 + 1 = 14$)

$$NO^+$$
 (number of electrons = 7 + 8 - 1 = 14)

$$O_2^-$$
 (number of electrons = 8 + 8 + 1 = 17)

$$O_2^{2-}$$
 (number of electrons = 8 + 8 + 2 = 18)

Thus, CN⁻ and NO⁺ because of the presence of same number of electrons, have same bond order.

Q. 24 Which of the following attain the linear structure?

(a) BeCl₂

(b) NCO⁺

(c) NO_2

(d) CS_2

Ans. (a, d)

 $\mathrm{BeCl_2}$ (Cl — Be — Cl) and $\mathrm{CS_2}$ (S = C = S) both are linear. NCO+ is non-linear. However, [remember that ^{-}NCO ($^{-}N = ^{-}C = ^{-}O$) is linear because it is isoelectronic with CO_2]. NO_2 is angular with bond angle 132° and each O — N bond length of 1.20 Å (intermediate between single and double bond).

Q. 25 CO is isoelectronic with

(a) NO⁺

(b) N_2

(c) $SnCl_2$ (d) NO_2^-

Thinking Process

Isoelectronic species are those species have same number of electrons but different nuclear charge.

Ans. (a, b)

Electrons present in CO = 6 + 8 = 14

In
$$NO^+ = 7 + 8 - 1 = 14$$

In
$$N_2 = 7 + 7 = 14$$

In
$$SnCl_2 = (\text{very high}) 50 + 17 \times 2 = 50 + 34 = 84$$
.

In
$$NO_2^- = 7 + 16 + 1 = 24$$

Q. 26 Which of the following species have the same shape?

(a) CO₂

(b) CCl₄

(c) O^3

(d) NO_{2}^{-}

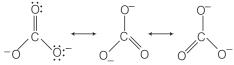
Ans. (c, d)

The shape of following species are

 CO_2 = linear

 CCl_4 = tetrahedral

 $O_3 = bent$


 $NO_2^- = bent$

\mathbf{Q} . 27 Which of the following statements are correct about CO_3^{2-} ?

- (a) The hybridisation of central atom is sp^3
- (b) Its resonance structure has one C-O single bond and two C=O double bonds
- (c) The average formal charge on each oxygen atom is 0.67 units
- (d) All C—O bond lengths are equal

Ans. (c, d)

The hybridisation of central atom in CO_3^{2-} is sp^2 . Hence, (a) is wrong.

Due to resonance all C—O bond lengths are equal.

Formal charge on each O-atom = $\frac{\text{total charge}}{\text{Number of O - atoms}} = \frac{-2}{3} = -0.67 \text{ units.}$

All C—O bond lengths are equal as mentioned above.

Q.	28	Diamagnetic	species	are	those	which	contain	no	unpaired	electrons.
		Which among	g the fol	lowi	ng are	diama	gnetic?			

(a)
$$N_2$$

(b) N_2^{2-} (d) O_2^{2-}

Ans. (a, d)

- (a) Electronic configuration of $N_2 = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^2 2\rho_x^2 \approx \pi 2\rho_y^2$, $\sigma^2 2\rho_z^2$. It has no unpaired electron indicates diamagnetic species.
- (b) Electronic configuration of N_2^{2-} ion = $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 \approx \pi p_y^2$, $\sigma 2p_z^2$, $\pi^* 2 p_x^1 \approx \pi^* 2 p_y^1$

It has two unpaired electrons, paramagnetic in nature.

(c) Electronic configuration of $O_2 = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_r^2$, $\pi 2p_x^2 \approx \pi 2p_v^2$,

$$\pi^* 2 p_x^1 \approx \pi^* 2 p_y^1$$

The presence of two unpaired electrons shows its paramagnetic nature.

(d) Electronic configuration of O_2^{2-} ion = $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma 2p_7^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$,

$$\pi^* 2p_r^2 \approx \pi^* 2p_r^2$$

It contains no unpaired electron, therefore, it is diamagnetic in nature.

Q. 29 Species having same bond order are

(a)
$$N_2$$

(b)
$$N_2^-$$

(c)
$$F_2^+$$

(d)
$$O_2^-$$

Ans. (c, d)

Bond order of the following species are calculated using molecular orbital electronic configuration and found as

$$N_2 = 3$$
, $N_2^- = 2.5$

$$F_2^+ = 1.5$$

$$F_2^+ = 1.5,$$
 $O_2^- = 1.5$

Q. 30 Which of the following statements are not correct?

- (a) NaCl being an ionic compound is a good conductor of electricity in the solid
- (b) In canonical structure there is a difference in the arrangement of atoms
- (c) Hybrid orbitals form stronger bonds than pure orbitals
- (d) VSEPR theory can explain the square planar geometry of XeF₄

Ans. (a, b)

- (a) NaCl is a bad conductor of electricity in solid due to the absence of free ions.
- (b) Canonical structures differ in the arrangement of electrons, not in the arrangement of atoms.

Short Answer Type Questions

- Q. 31 Explain the non-linear shape of H₂S and non-planar shape of PCl₃ using valence shell electron pair repulsion theory.
- **Ans.** Central atom of H_2 is S. There are 6 electrons in its valence shell ($_{16}S = 2, 8, 6$). Two electrons are shared with two H-atoms and the remaining four electrons are present as two lone pairs.

Hence, total pairs of electrons are four (2 bond pairs and 2 lone pairs). Due to the presence of 2 lone pairs the shape becomes distorted tetrahedral or angular or bent (non-linear).

 PCl_3 —Central atom is phosphorus. There are 5 electrons in its valence shell ($_{15}P = 2, 8, 5$). Three electrons are shared with three Cl-atoms and the remaining two electrons are present as one lone pair.

Hence, total pairs of electrons are four (1 lone pair and 3 bond pairs). Due to the presence of one lone pair, the shape becomes pyramidal (non-planar).

- **Q. 32** Using molecular orbital theory, compare the bond energy and magnetic character of O_2^+ and O_2^- species.
- **Ans.** According to molecular orbital theory electronic configurations of O₂⁺ and O₂⁻ species are as follows

$$O_2^+ : (\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2\rho_z)^2 (\pi 2\rho_x^2, \pi 2\rho_y^2) (\pi^* 2\rho_x^1)$$

Bond order of
$$O_2^+ = \frac{10-5}{2} = \frac{5}{2} = 2.5$$

$$O_2^- : (\sigma 1s)^2 (\sigma^* 1s^2) (\sigma 2s^2) (\sigma^* 2s^2) (\sigma 2\rho_z)^2 (\pi 2\rho_x^2, \, \pi 2\rho_y^2) (\pi^* 2\rho_x^2, \, \pi^* 2\rho_y^1)$$

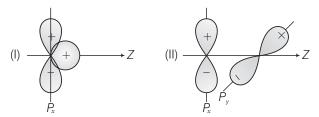
Bond order of
$$O_2^- = \frac{10-7}{2} = \frac{3}{2} = 1.5$$

Higher bond order of O_2^+ shows that it is more stable than O_2^- . Both the species have unpaired electrons. So, both are paramagnetic in nature.

- **Q. 33** Explain the shape of BrF_5 .
- **Ans.** The central atom Br has seven electrons in the valence shell. Five of these will form bonds with five fluorine atoms and the remaining two electrons are present as one lone pair.

Hence, total pairs of electrons are six (5 bond pairs and 1 lone pair). To minimize repulsion between lone pairs and bond pairs, the shape becomes square pyramidal.

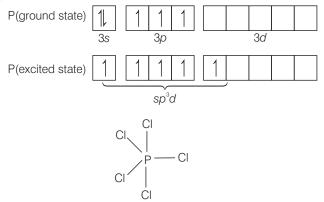
Q. 34 Structures of molecules of two compounds are given below.


- (a) Which of the two compounds will have intermolecular hydrogen bonding and which compound is expected to show intramolecular hydrogen bonding?
- (b) The melting point of compound depends on, among other things, the extent of hydrogen bonding. On this basis explain which of the above two compounds will show higher melting point?
- (c) Solubility of compounds in water depends on power to form hydrogen bonds with water. Which of the above compounds will form hydrogen bond with easily and be more soluble in it?
- **Ans. (a)** Compound (I) will form intramolecular H-bonding. Intramolecular H-bonding is formed when H-atom, in between the two highly electronegative atoms, is present within the same molecule. In *ortho*-nitrophenol (compound I), H-atom is in between the two oxygen atoms.

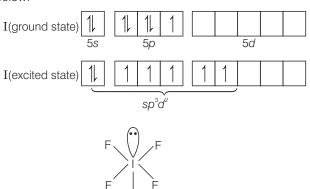
$$(1) \begin{array}{c|c} O \\ \parallel \\ N \\ O^- \\ H \end{array} \\ \text{H-bond}$$

Compound (II) forms intermolecular H-bonding. In para-nitrophenol (II) there is a gap between NO_2 and OH group. So, H-bond exists between H-atom of one molecule and O-atom of another molecule as depicted below.

- **(b)** Compound (II) will have higher melting point because large number of molecules are joined together by H-bonds.
- (c) Due to intramolecular H-bonding, compound (I) is not able to form H-bond with water, so it is less soluble in water. While molecules of compound II form H-bonding with $\rm H_2O$ easily, so it is soluble in water.


Q. 35 Why does type of overlap given in the following figure not result in bond formation?

Ans. In the figure (I), area of ++ overlap is equal to +- overlap, so net overlap is zero, while in figure (II), there is no overlap due to different symmetry.


Q. 36 Explain why PCl₅ is trigonal bipyramidal whereas IF₅ is square pyramidal.

Ans. PCl_5 —The ground state and the excited state outer electronic configurations of phosphorus (Z = 15) are represented below

In PCl_5 , P is sp^3d hybridised, therefore, its shape is trigonal bipyramidal.

 IF_5 -The ground state and the excited state outer electronic configurations of iodine (Z=53) are represented below.

In IF_5 , I is sp^3d^2 hybridised, therefore, shape of IF_5 is square pyramidal.

- Q. 37 In both water and dimethyl ether (CH₃—O—CH₃), oxygen atom is central atom, and has the same hybridisation, yet they have different bond angles. Which one has greater bond angle? Give reason.
- **Ans.** Dimethyl ether has greater bond angle than that of water, however in both the molecules central atom oxygen is sp^3 hybridised with two lone pairs. In dimethyl ether, bond angle is greater (111.7°) due to the greater repulsive interaction between the two bulky alkyl (methyl) groups than that between two H-atoms.

Dimethyl ether

Actually C of CH_3 group is attached to three H-atoms through σ -bonds. These three C—H bond pair of electrons increases the electronic charge density on carbon atom.

Q. 38 Write Lewis structure of the following compounds and show formal charge on each atom.

Ans. The Lewis structure of the following compounds and formal charge on each atom are as

Formal charge on an atom in a Lewis structure

- = [total number of valence electrons in free atom]
 - [total number of non-bonding (lone pairs) electrons] $\frac{1}{2}$ [total number of bonding or shared electrons]

Formal charge on
$$H = 1 - 0 - \frac{1}{2} \times 2 = 0$$

Formal charge on N =
$$5 - 0 - \frac{1}{2} \times 8 = 1$$

Formal charge on O(1) =
$$6 - 4 - \frac{1}{2} \times 4 = 0$$

Formal charge on O(2) =
$$6 - 4 - \frac{1}{2} \times 4 = 0$$

Formal charge on O(3) =
$$6 - 6 - \frac{1}{2} \times 2 = -1$$

(ii) NO_2

Formal charge on O(1) =
$$6 - 4 - \frac{1}{2} \times 4 = 0$$

Formal charge on N =
$$5 - 1 - \frac{1}{2} \times 6 = +1$$

Formal charge on O(2) =
$$6 - 6 - \frac{1}{2} \times 2 = -1$$

Formal charge on H(1) or H(2) =
$$1 - 0 - \frac{1}{2} \times 2 = 0$$

Formal charge on O(1) or O(3) =
$$6 - 4 - \frac{1}{2} \times 4 = 0$$

Formal charge on O (2) or O (4) =
$$6 - 6 - \frac{1}{2} \times 2 = -1$$

Formal charge on S =
$$6 - 0 - \frac{1}{2} \times 8 = +2$$

Q. 39 The energy of $\sigma 2p_z$ molecular orbital is greater than $\pi 2p_x$ and $\pi 2p_y$ molecular orbitals in nitrogen molecule. Write the complete sequence of energy levels in the increasing order of energy in the molecule. Compare the relative stability and the magnetic behaviour of the following species.

$$N_2, N_2^+, N_2^-, N_2^{2+}$$

Ans. Electronic configuration of N-atom (Z=7) is $1s^22s^22p_x^12p_y^12p_z^1$. Total number of electrons present in N₂ molecule is 14, 7 from each N-atom. From the view of various rules for filling of molecular orbitals, the electronic configuration of N₂ molecule will be

$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2, \sigma 2p_z^2$$

Comparative study of the relative stability and the magnetic behaviour of the following species

(i)
$$N_2$$
 molecule o1s², σ^* s², σ 2s², σ^* 2s², $\pi p_x^2 \approx \pi 2 p_y^2$, σ 2 p_z^2

Here,
$$N_b = 10$$
, $N_a = 4$.

Hence, Bond order =
$$\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 4) = 3$$

Hence, presence of no unpaired electron indicates it to be diamagnetic.

(ii)
$$N_2^+$$
 ions $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2\rho_x^2 \approx \pi 2\rho_y^2$, $\sigma 2\rho_z^1$

Here,
$$N_b = 9$$
, $N_a = 4$ so that $BO = \frac{1}{2}(9 - 4) = \frac{5}{2} = 2.5$

Further, as N_2^+ ion has one unpaired electron in the $\sigma(2p_2)$ orbital, therefore, it is paramagnetic in nature.

$$\text{(iii) } \mathbf{N_2^- ions} \ \sigma 1 \text{s}^2, \sigma^* \text{s}^2, \sigma 2 \text{s}^2, \sigma^* 2 \text{s}^2, \pi 2 \rho_x^2 \approx \pi 2 \rho_y^2, \sigma 2 \rho_z^2, \pi^* 2 \rho_x^1$$

Here,
$$N_b = 10$$
, $N_a = 5$ so that $BO = \frac{1}{2}(10 - 5) = \frac{5}{2} = 2.5$

Again, as it has one unpaired electron in the $\pi^*(2p_x)$ orbital, therefore, it is paramagnetic.

(iv)
$$\mathbf{N_2^{2+}}$$
 ions $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2 \approx \pi 2p_y^2$

Here,
$$N_b = 8$$
, $N_a = 4$. Hence, $BO = \frac{1}{2}(8 - 4) = 2$

Presence of no unpaired electron indicates it to be diamagnetic in nature.

As bond dissociation energies are directly proportional to the bond orders, therefore, the dissociation energies of these molecular species in the order.

$$N_2 > N_2^- = N_2^+ > N_2^{2+}$$

As greater the bond dissociation energy, greater is the stability, the stability of these species is also in the above order.

Q. 40 What is the effect of the following processes on the bond order in N_2 and O_2 ?

(a)
$$N_2 \longrightarrow N_2^+ + e^-$$
 (b) $O_2 \longrightarrow O_2^+ + e^-$

Ans. According to molecular orbital theory, electronic configurations and bond order of N_2 , N_2^+ , O_2 and O_2^+ species are as follows

$$\begin{split} &N_2 \ (14e^-) = \sigma 1s^2, \, \overset{\star}{\sigma} 1s^2, \, \sigma 2s^2, \, \overset{\star}{\sigma} 2s^2, \, (\pi \ 2 \, \rho_x^2 \approx \pi 2 \, \rho_y^2), \, \sigma 2 \, \rho_z^2 \\ \text{Bond order} &= \frac{1}{2} \left[N_b - N_a \right] = \frac{1}{2} \left(10 - 4 \right) = 3 \\ &N_2^+ \ (13e^-) = \sigma 1s^2, \, \overset{\star}{\sigma} 1s^2, \, \sigma 2s^2, \, \overset{\star}{\sigma} 2s^2, \, (\pi \ 2 \, \rho_x^2 \approx \pi 2 \, \rho_y^2) \, \sigma 2 \, \rho_z^1 \\ \text{Bond order} &= \frac{1}{2} \left[N_b - N_a \right] = \frac{1}{2} \left(9 - 4 \right) = 2.5 \\ &O_2 \ (16e^-) = \sigma 1s^2, \, \overset{\star}{\sigma} 1s^2, \, \sigma 2s^2, \, \overset{\star}{\sigma} 2s^2, \, \sigma 2 \, \rho_z^2, \, (\pi 2 \, \rho_x^2 \approx \pi 2 \, \rho_y^2), \, (\overset{\star}{\pi} 2 \, \rho_x^1 \approx \overset{\star}{\pi} 2 \, \rho_y^1) \\ \text{Bond order} &= \frac{1}{2} \left[N_b - N_a \right] = \frac{1}{2} \left(10 - 6 \right) = 2 \\ &O_2^+ \ (15e^-) = \sigma 1s^2, \, \overset{\star}{\sigma} 1s^2, \, \sigma 2s^2, \, \overset{\star}{\sigma} 2s^2, \, \sigma 2 \, \rho_z^2, \, (\pi 2 \, \rho_x^2 \approx \pi 2 \, \rho_y^2), \, (\overset{\star}{\pi} 2 \, \rho_x^1 \approx \overset{\star}{\pi} 2 \, \rho_y) \\ \text{Bond order} &= \frac{1}{2} \left[N_b - N_a \right] = \frac{1}{2} \left(10 - 5 \right) = 2.5 \end{split}$$

(a)
$$N_2 \longrightarrow N_2^+ + e^-$$

B.O. = 3 B.O. = 2.5

Thus, bond order decreases.

(b)
$$O_2 \longrightarrow O_2^+ + e^-$$

B.O = 2.5

Thus, bond order increases.

- Q. 41 Give reason for the following.
 - (a) Covalent bonds are directional bonds while ionic bonds are non-directional.
 - (b) Water molecule has bent structure whereas carbon dioxide molecule is linear.
 - (c) Ethyne molecule is linear.
- **Ans. (a)** A covalent bond is formed by the overlap of atomic orbitals. The direction of overlapping gives the direction of bond. In ionic bond, the electrostatic field of an ion is non-directional.

Each positive ion is surrounded by a number of anions in any direction depending upon its size and *vice-versa*. That's why covalent bonds are directional bonds while ionic bonds are non-directional.

(b) In H_2O , oxygen atom is sp^3 hybridised with two lone pairs. The four sp^3 hybridised orbitals acquire a tetrahedral geometry with two corners occupied by hydrogen atoms while other two by the lone pairs.

The bond angle is reduced to 104.5° from 109.5° due to greater repulsive forces between lp - lp and the molecule thus acquires a V-shape or bent structure (angular structure).

In CO_2 molecule, carbon atom is *sp*-hybridised. The two *sp* hybrid orbitals are oriented in opposite direction forming an angle of 180°.

$$O\frac{\pi}{\sigma}C\frac{\pi}{\sigma}C$$

That's why H₂O molecule has bent structure whereas CO₂ molecule is linear.

(c) In ethyne molecule, both the carbon atoms are sp hybridised, having two unhybridised orbitals, *i.e.*, $2p_x$ and $2p_y$. The two sp hybrid orbitals of both the carbon atoms are oriented in opposite direction forming an angle of 180°.

$$H - C \subseteq C - H$$

$$2\pi - bond$$

That's why ethyne molecule is linear.

Q. 42 What is an ionic bond? With two suitable examples the difference between an ionic and a covalent bond?

Ans. Ionic bond The bond formed, as a result of the electrostatic attraction between the positive and negative ions was termed as the electrovalent bond or ionic bond. *e.g.*, the formation of NaCl from sodium and chlorine can be explained as

$$Na \longrightarrow Na^+ + e^-$$

[Ne] [Ne]

$$CI + e \longrightarrow CI^-$$

[Ne] 3 s² 3p⁶ or [Ar]

Similarly, the formation of CaF₂ may be shown as

$$\begin{array}{c} \text{Ca} & \longrightarrow \text{Ca}^{2+} + 2e^{-} \\ \text{[Ar]}^{4} s^{2} & \text{[Ar]} \end{array}$$

$$\begin{array}{c} \text{F} & +e^{-} \longrightarrow \text{F}^{-} \\ \text{[He]} \ 2 \, s^{2} 2 \rho^{5} \text{ or [Ne]} \end{array}$$

$$\begin{array}{c} \text{Ca}^{2+} + 2 \text{F}^{-} \longrightarrow \text{CaF}_{2} \text{ or Ca}^{2+} (\text{F}^{-})_{2} \end{array}$$

Covalent bond The bond formed between the two atoms by mutual sharing of electrons between them is called covalent bond. e.g., the formation of chlorine molecule can be explained as

Similarly, in the formation of HCI

Q. 43 Arrange the following bonds in order of increasing ionic character giving reason.

Ans. Greater is the electronegativity difference between the two bonded atoms, greater is the ionic character.

Bond	N—H	F—H	С—Н	О—Н
Electronegativity difference	(3.0 - 2.1) = 0.9	(4.0 - 2.1) = 1.9	(2.5 - 2.1) = 0.4	(3.5 - 2.1) = 1.4

Therefore, increasing order of ionic character of the given bonds is as follows

$$C - H < N - H < O - H < F - H$$

Q. 44 Explain why CO_3^{2-} ion cannot be represented by a single Lewis structure. How can it be best represented?

Ans. A single Lewis structure of CO_3^{2-} ion cannot explain all the properties of this ion. *It can be represented as a resonance hybrid of the following structures*

$$\begin{array}{c} 0 \\ \parallel \\ -0 \end{array} \begin{array}{c} 0 \\ \parallel \\ 0 \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \parallel \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c$$

If, it were represented only by one structure, there should be two types of bonds, i.e., C = O double bond and C - O single bonds but actually all bonds are found to be identical with same bond length and same bond strength.

Q. 45 Predict the hybridisation of each carbon in the molecule of organic compound given below. Also indicate the total number of sigma and pi-bonds in this molecule.

$$CH \equiv C - C - CH_2 - C$$

Ans. The hybridisation and type of bonds of each carbon in the molecule given below

Q. 46 Group the following as linear and non-linear molecules. H_2O , HOCl, $BeCl_2$, Cl_2O

Ans. The structure of the given molecules are

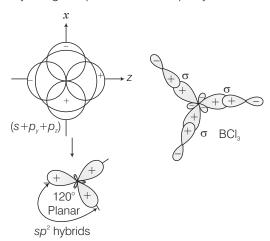
Therefore, only BeCl₂ is linear and rest of the molecules are non-linear.

- \mathbf{Q} . **47** Elements X, Y and Z have 4, 5 and 7 valence electrons respectively.
 - (a) Write the molecular formula of the compounds formed by these elements individually with hydrogen.
 - (b) Which of these compounds will have the highest dipole moment?

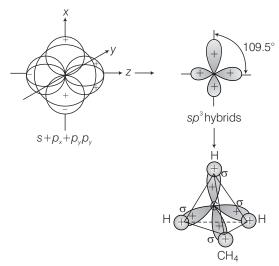
Ans. (a)

(b) *Z* has seven electrons in its valence shell. It is the most electronegative element. Therefore, H*Z* will have the highest dipole moment.

Q. 48 Draw the resonating structure of

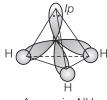

- (a) ozone molecule
- (b) nitrate ion

Ans. (a) The resonating structure of ozone molecule may be written as


(b) The resonating structure of nitrate ion (NO_3^-) is

Q. 49 Predict the shapes of the following molecules on the basis of hybridisation.

Ans. In BCl_3 , the geometry is trigonal planar is due to sp^2 hybridisation.



The shape of CH_4 is tetrahedral due to sp^3 hybridisation.

 ${\rm CO_2}$ show linear shape because of ${\it sp}$ hybridisation.

The geometry of NH_3 is pyramidal shape and has sp^3 hybridisation.

Ammonia, NH₃

Q. 50 All the C—0 bonds in carbonate ion (CO_3^{2-}) are equal in length. Explain.

Thinking Process

To explain the reason of equal in length of C—O bonds, it should keep in mind about the resonance. As a result of resonance, the bond length in a molecule become equal.

Ans. Carbonate ion $(CO_3^{2-}) = 3$ bond pair + 1 lone pair \Rightarrow trigonal planar

Due to resonance all C—O bond length are equal.

Q. 51 What is meant by the term average bond enthalpy? Why is there difference in bond enthalpy of 0—H bond in ethanol (C_2H_5OH) and water?

Ans. All the similar bonds in a molecule do not have the same bond enthalpies. e.g., in $H_2O(H-O-H)$ molecule after the breaking of first O—H bond, the second O—H bond undergoes some change because of changed chemical environment.

Therefore, in polyatomic molecules the term mean or average bond enthalpy is used. It is obtained by dividing total bond dissociation enthalpy by the number of bonds broken.

e.g.,
$$\begin{array}{c} \text{H}_2\text{O}(g) & \longrightarrow & \text{H}(g) + \text{OH}(g); \\ \Delta_a H_1^\circ = 502 \text{ kJ mol}^{-1} & \text{OH}(g) & \longrightarrow & \text{H} + \text{O}(g); \\ \\ \Delta_a H_2^\circ = 427 \text{ kJ mol}^{-1} \\ \text{Average O--H bond enthalpy} = \frac{502 + 427}{2} = 464.5 \text{ kJ mol}^{-1} \end{array}$$

The bond enthalpies of O—H bond in C_2H_5OH and H_2O are different because of the different chemical (electronic) environment around oxygen atom.

Matching The Columns

Q. 52 Match the species in Column I with the type of hybrid orbitals in Column II.

C	olumn I	C	olumn II
Α.	SF_4	1.	sp^3d^2
В.	\mathbf{IF}_{5}	2.	d^2sp^3
C.	NO_2^+	3.	sp^3d
D.	NH_4^+	4.	sp ³
		5.	sp

Ans. A.
$$\to$$
 (3) B. \to (1) C. \to (5) D. \to (4)

A.
$$SF_4$$
 = number of bp (4) + number of lp (1)
= sp^3d hybridisation

B.
$$IF_5$$
 = number of bp (5) + number of lp (1)
= sp^3d^2 hybridisation

C.
$$NO_2^+$$
 = number of bp (2) + number of lp (0) = sp hybridisation

D.
$$NH_4^+ = number of bp (4) + number of lp (0)$$

= sp^3 hybridisation.

 $\mathbf{Q.53}$ Match the species in Column I with the geometry/shape in Column II.

	Column I		Column II
Α.	H_3O^+	1.	Linear
B.	HC≡CH	2.	Angular
C.	CIO_2^-	3.	Tetrahedral
D.	NH_4^+	4.	Trigonal bipyramidal
		5.	Pyramidal

Ans. A.
$$\rightarrow$$
 (5) B. \rightarrow (1) C. \rightarrow (2) D \rightarrow (3)

A.
$$H_3O^+ = 3bp + 1/p$$
 pyramidal shape

B.
$$HC \equiv CH \Rightarrow$$
 linear as sp hybridised shape

C.
$$CIO_2^- = 2bp + 2lp \Rightarrow$$
 angular shape

D.
$$NH_4^+ = 4bp + 0/p \Rightarrow$$
 tetrahedral shape

$oldsymbol{Q}_{oldsymbol{\cdot}}$ $oldsymbol{54}$ Match the species in Column II.

(Column I	Column II			
Α.	NO	1.	1.5		
В.	CO	2.	2.0		
C.	O_2^-	3.	2.5		
D.	O_2	4.	3.0		

Ans. A.
$$\rightarrow$$
 (3) B. \rightarrow (4) C. \rightarrow (1) D. \rightarrow (2)

A. NO
$$(7 + 8 = 15) = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2 \approx \pi 2p_y^2$, $\sigma^* 2p_x^2$
Bond order $= \frac{1}{2}(N_b - N_a) = \frac{10 - 5}{2} = 2.5$

B. CO
$$(6 + 8 = 14) = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2\rho_z^2$, $\sigma 2\rho_x^2 \approx \pi 2\rho_y^2$

Bond order =
$$\frac{10-4}{2}$$
 = 3

C.
$$O_2^-(8+8+1=17) = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^2 p_z^2$, σ^2

D.
$$O_2(8+8=16) = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^2 p_z^2$, $\sigma^2 p_z^2$, $\sigma^2 p_z^2 \approx \sigma^2 p_z^2$, $\sigma^* 2p_z^2 \approx \sigma^2 p_z^2$, $\sigma^* 2p_z^2 \approx \sigma^2 p_z^2$.

Bond order $\sigma^2 = \frac{10-6}{2} = 2$

$\mathbf{Q.55}$ Match the items given in Column I with examples given in Column II.

	Column I	C	Column II
Α.	Hydrogen bond	1.	С
В.	Resonance		LiF
C.	Ionic solid	3.	H ₂ HF
D.	Covalent solid	4.	HF
		5.	O_3

Ans. A.
$$\rightarrow$$
 (4)

$$B. \rightarrow (5)$$

B.
$$\to$$
 (5) **C.** \to (2)

$$D. \rightarrow (1)$$

B. Resonance
$$\rightarrow$$
 O₃

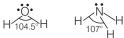
D. Covalent solid
$$\rightarrow$$
 C

Q. 56 Match the shape of molecules in Column I with the type of hybridisation in Column II.

	Column I		Column II
Α.	Tetrahedral	1.	sp^2
В.	Trigonal	2.	sp
C.	Linear	3.	sp^3

- **Ans.** A. \to (3) B. \to (1) C. \to (2)
 - A. Tetrahedral shape $-sp^3$ hybridisation
 - B. Trigonal shape $-sp^2$ hybridisation
 - C. Linear shape sp hybridisation

Assertion and Reason


In the following questions, a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct option out of the choices given below in each question.

- Q. 57 Assertion (A) Sodium chloride formed by the action of chlorine gas on sodium metal is a stable compound.
 - **Reason** (R) This is because sodium and chloride ions acquire octet in sodium chloride formation.
 - (a) A and R both are correct and R is the correct explanation of A
 - (b) A and R both are correct, but R is not the correct explanation of A
 - (c) A is true, but R is false
 - (d) A and R both are false
- **Ans.** (a) Assertion and reason both are correct and reason is the correct explanation of assertion.

$$\text{Na}_{(2, 8, 1)} + \text{Cl}_{(2, 8, 7)} \longrightarrow \text{NaCl}_{(2, 8)_{(2, 8, 8)}}$$

Here both Na⁺ and Cl⁻ have complete octet hence NaCl is stable.

- **Q. 58 Assertion** (A) Though the central atom of both NH_3 and H_2O molecules are sp^3 hybridised, yet H-N-H bond angle is greater than that of H—0—H.
 - **Reason** (R) This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.
 - (a) A and R both are correct and R is the correct explanation of A
 - (b) A and R both are correct but R is not the correct explanation of A
 - (c) A is true, but R is false
 - (d) A and R both are false
- **Ans.** (a) Assertion and reason both are correct and reason is the correct explanation of assertion.

sp3-hybridised sp3-hybridised

- Q. **59 Assertion** (A) Among the two 0—H bonds in H₂O molecule, the energy required to break the first 0—H bond and the other 0—H bond is the same.
 - **Reason** (R) This is because the electronic environment around oxygen is the same even after breakage of one 0—H bond.
 - (a) A and R both are correct and R is the correct explanation of A
 - (b) A and R both are correct, but R is not the correct explanation of A
 - (c) A is true, but R is false
 - (d) A and R both are false
- **Ans.** (d) Correct assertion The bond enthalpies of the two O—H bonds in H—O—H are not equal.

Correct reason This is because electronic environment around O is not same after breakage of one O—H bond.

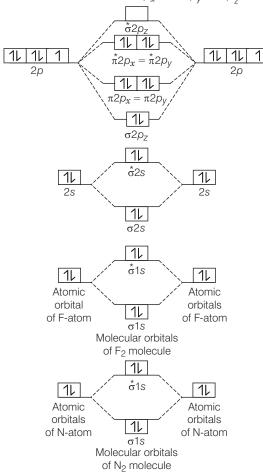
Long Answer Type Questions

- **Q. 60** (a) Discuss the significance/applications of dipole moment.
 - (b) Represent diagrammatically the bond moments and the resultant dipole moment in CO₂ , NF₃ and CHCl₃.
- Ans. (a) The applications of dipole moment are
 - (i) The dipole moment helps to predict whether a molecule is polar or non-polar. As $\mu=q\times d$, greater is the magnitude of dipole moment, higher will be the polarity of the bond. For non-polar molecules, the dipole moment is zero.
 - (ii) The percentage of ionic character can be calculated as

Percentage of ionic character =
$$\frac{\mu_{observed}}{\mu_{ionic}} \times 100$$

- (iii) Symmetrical molecules have zero dipole moment although they have two or more polar bonds (in determination of symmetry).
- (iv) It helps to distinguish between *cis* and *trans* isomers. Usually *cis*-isomer has higher dipole moment than *trans* isomer.
- (v) It helps to distinguish between *ortho*, *meta* and *para* isomers. Dipole moment of *para* isomer is zero. Dipole moment of ortho isomer is greater than that of *meta* isomer.

(b)
$$O \stackrel{\rightleftharpoons}{=} C \stackrel{\rightleftharpoons}{=} O$$

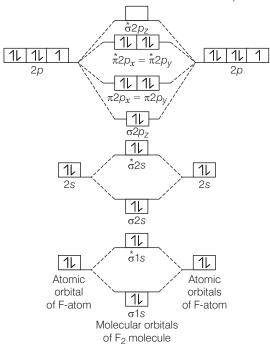

$$M = 0$$

$$F \qquad F \qquad CI \qquad CI$$

$$CI \qquad CI$$

Q. 61 Use the molecular orbital energy level diagram to show that N_2 would be expected to have a triple bond. F_2 , a single bond and Ne_2 , no bond.

Ans. Formation of N₂ molecule Electronic configuration of N- atom $_7$ N = 1s², 2s², 2 p_x^1 , 2 p_y^1 , 2 p_z^1 N₂ molecule = σ 1s², σ * 1s², σ 2s², σ * 2s², σ 2s², σ 2 p_x^2 $\approx \pi$ 2 p_y^2 , σ 2 p_z^2

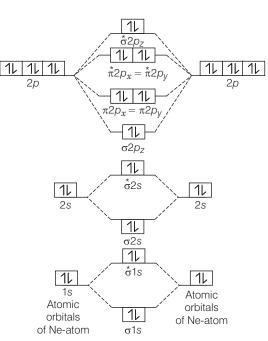


Bond order = $\frac{1}{2}[N_b - N_a] = \frac{1}{2}(10 - 4) = 3.$

Bond order value of 3 means that N₂ contains a triple bond.

Formation of F_2 molecule, ${}_9F = 1s^2, 2s^2, 2p_x^2, 2p_y^2, 2p_z^1$

 $\mathsf{F_{2}} \ \mathsf{molecule} = \sigma \mathsf{1s^{2}}, \sigma \! * \; \mathsf{1s^{2}}, \sigma \mathsf{2s^{2}}, \sigma \! * \; \mathsf{2s^{2}}, \sigma \mathsf{2} \rho_{\mathsf{z}}^{\; 2}, \pi \mathsf{2} \rho_{\mathsf{x}}^{\; 2} \approx \pi \mathsf{2} \rho_{\mathsf{y}}^{\; 2}, \pi \! * \; \mathsf{2} \rho_{\mathsf{x}}^{2} \approx \pi \; \mathsf{2} \rho_{\mathsf{y}}^{2}$


Bond order = $\frac{1}{2}[N_b - N_a] = \frac{1}{2}(10 - 8) = 1$

Bond order value 1 means that F_2 contains single bond.

Formation of Ne₂ molecule $_{10}$ Ne = 1s², 2s², 2 ρ_x^2 , 2 ρ_y^2 , 2 ρ_z^2

 ${\rm Ne_2 molecule} = {\rm \sigma1s^2, \sigma^* \, 1s^2, \sigma2s^2, \sigma^* \, 2s^2, \sigma2p_z^{\, 2}, \pi2p_x^{\, 2}} \approx {\rm \pi2p_y^{\, 2}, \pi^* \, 2p_x^{\, 2}}$

 $\approx \pi * 2p^2_y, \sigma * 2p_z^2$

Molecular orbitals of Ne2 molecule

Bond order =
$$\frac{1}{2}[N_b - N_a] = \frac{1}{2}(10 - 10) = 0$$

Bond order value zero means that there is no formation of bond between two Ne-atoms. Hence, Ne₂ molecule does not exist.

Q. **62.**Briefly describe the valence bond theory of covalent bond formation by taking an example of hydrogen. How can you interpret energy changes taking place in the formation of dihydrogen?

Ans. Valence bond theory (VBT) was introduced by Heitler and London (1927) and developed further by Pauling and other. VBT is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals, the hybridisation of atomic orbitals and the principles of variation and superposition.

Consider two hydrogen atoms A and B approaching each other having nuclei N_A and N_B and electrons present in them are represented by e_A and e_B . When the two atoms are at large distance from each other, there is no interaction between them.

As these two atoms approach each other, new attractive and repulsive forces begin to operate.

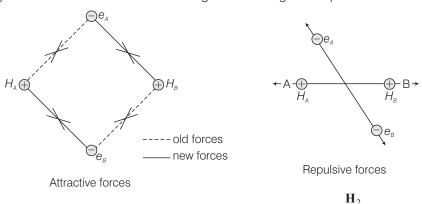
Attractive forces arise between

(i) nucleus of one atom and its own electron

i.e.,
$$N_A - e_A$$
 and $N_B - e_B$

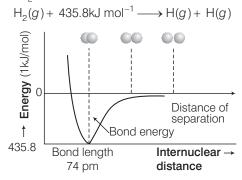
(ii) nucleus of one atom and electron of other atom

i.e.,
$$N_A - e_B, N_B - e_A$$


Similarly, repulsive forces arise between

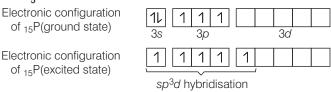
- (i) electrons of two atoms like $e_A e_B$
- (ii) nuclei of two atoms like $N_A N_B$

Attractive forces tend to bring the two atoms close to each other whereas repulsive forces tend to push them apart.


Experimentally, we have been found that the magnitude of new attractive force is more than the new repulsive forces. As a result two atoms approach each other and potential energy decreases.

Hence, a stage is reached where the net force of attraction balances the force of repulsion and system acquires minimum energy. At this stage, two H-atoms are said to be bonded together to form a stable molecule having the bond length of 74 pm.

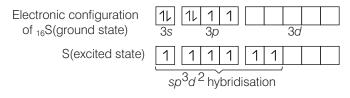
Since, the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is more stable than that of isolated hydrogen atoms.


The energy so released is called as bond enthalpy, which is corresponding to minimum in the curve depicted in the given figure. Conversely 435.8 kJ of energy is required to dissociate one mole of $\rm H_2$ molecule.

The potential energy curve for the formation of H_2 molecule as a function of internuclear distance of the H-atoms. The minimum in the curve corresponds to the most stable state or H_2 .

Q. 63 Describe hybridisation in the case of PCl₅ and SF₆. The axial bonds are longer as compared to equatorial bonds in PCl₅ whereas in SF₆ both axial bonds and equatorial bonds have the same bond length. Explain.

Ans. Formation of PCI₅



In PCl_5 , phosphorus is sp^3d hybridised to produce a set of five sp^3d hybrid orbitals which are directed towards the five corners of a trigonal bipyramidal. These five sp^3d hybrid orbitals overlap with singly occupied p-orbitals of Cl-atoms to form five P—Cl sigma bonds.

Three P—CI bonds lie in one plane and make an angle of 120° with each other. These bonds are called equatorial bonds. The remaining two P—CI bonds one lying above and other lying below the plane make an angle of 90° with the equatorial plane.

These bonds are called axial bonds. Axial bonds are slightly longer than equatorial bonds because axial bond pairs suffer more repulsive interaction from the equatorial bond pairs.

Formation of SF₆

In SF₆, sulphur is sp^3d^2 hybridised to produce a set of six sp^3d^2 hybrid orbitals which are directed towards the six corners of a regular octahedron. These six sp^3d^2 hybrid orbitals overlap with singly occupied orbitals of fluorine atoms to form six S—F sigma bonds.

Thus, SF₆ molecule has a regular octahedral geometry and all S—F bonds have same bond length.

- **O.** 64 (a) Discuss the concept of hybridisation. What are its different types in a carbon atom?
 - (b) What is the type of hybridisation of carbon atoms marked with star?

(i)
$$\overset{\circ}{\text{CH}}_2 = \text{CH}_* \overset{\circ}{\text{C}} = \text{CH}_*$$

(v)
$$CH_3$$
— $\overset{*}{C} \equiv CH$

Ans. Hybridisation It can be defined as the process of intermixing of the orbitals of slightly different energy or of same energy to produce entirely new orbitals of equivalent energy, identical shapes and symmetrically disposed in plane. New orbitals formed are called hybrid orbitals.

Only the orbitals of an isolated single atom can undergo hybridisation. The hybrid orbitals generated are equal in number to that of the pure atomic orbitals which mix up.

Hybrid orbitals do not make π , pi-bonds. If there are π -bonds, equal number of atomic orbitals must be left unhybridised for π -bonding.

Like atomic orbitals, hybrid orbitals cannot have more than two electrons of opposite spins. Types of hybridisation in carbon atoms

- (a) (i) Diagonal or sp-hybridisation All compounds of carbon containing $C \equiv C$ triple bond like ethyne (C₂H₂).
 - (ii) Trigonal or sp^2 -hybridisation All compounds of carbon containing C = C (double bond) like ethene (C_2H_4).
 - (iii) **Tetrahedral or** sp³**-hybridisation** All compounds of carbon containing C C single bonds only like ethane (C₂H₆).

(b) (i)
$$\overset{\star}{C}H_2 = CH - C *_{sp^2 \atop (3s)} = CH - C *_{sp^2 \atop (3s)}$$

(ii)
$$CH_3 \overset{\star}{C}H_2 OH$$

 $\underset{sp}{\overset{sp}{\circ}^3} (4 \sigma)$

(iv)
$$\overset{\star}{\text{CH}}_3$$
—CH = CH—CH₃
 $\underset{s\rho}{\text{SP}}^3$
(4 σ)

Direction (Q. Nos. 65-68) Comprehension given below is followed by some multiple choice questions. Each question has one correct option. Choose the correct option.

Molecular orbitals are formed by the overlap of atomic orbitals. Two atomic orbitals combine to form two molecular orbitals called bonding molecular orbital (BMO) and anti-bonding molecular orbital (ABMO). Energy of anti-bonding orbital is raised above the parent atomic orbitals that have combined and the energy of the bonding orbital is lowered than the parent atomic orbitals.

Energies of various molecular orbitals for elements hydrogen to nitrogen increase in the order σ 1s < σ 1s < σ 2s < σ 2s < $(\pi^2 p_x \approx \pi^2 p_y)$ < σ 2 p_z < $(\pi^* 2 p_x \approx \pi^* 2 p_y)$ < σ 2 p_z and

For oxygen and fluorine order of energy of molecular orbitals is given below $\sigma 1s < \sigma^* 1s < \sigma^2 2s < \sigma p_z < (\pi 2 p_x \approx \pi 2 p_y) < (\pi^* 2 p_x \approx \pi^* 2 p_y) < \sigma^* 2 p_z$

Different atomic orbitals of one atom combine with those atomic orbitals of the second atom which have comparable energies and proper orientation.

Further, if the overlapping is head on, the molecular orbital is called 'sigma', (σ) and if the overlap is lateral, the molecular orbital is called 'pi', (π). The molecular orbitals are filled with electrons according to the same rules as followed for filling of atomic orbitals.

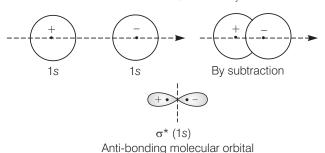
However, the order for filling is not the same for all molecules or their ions. Bond order is one of the most important parameters to compare the strength of bonds.

Q. 65 Which of the following statements is correct?

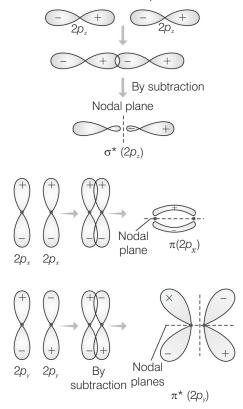
- (a) In the formation of dioxygen from oxygen atoms 10 molecular orbitals will be formed
- (b) All the molecular orbitals in the dioxygen will be completely filled
- (c) Total number of bonding molecular orbitals will not be same as total number of anti-bonding orbitals in dioxygen
- (d) Number of filled bonding orbitals will be same as number of filled anti-bonding orbitals

Ans. (a) In the formation of dioxygen from oxygen atoms, ten molecular orbitals will be formed.

$$O_2 = \frac{\sigma 1 s^2}{1} \frac{\sigma^* 1 s^2}{2} \frac{\sigma 2 s^2}{3} \frac{\sigma^* 2 s^2}{4} \frac{\sigma_2 \rho_z^2}{5} \frac{\pi 2 \rho_z^2}{6} \frac{\pi 2 \rho_y^2}{7} \frac{\pi^* 2 \rho_y^1}{8} \frac{\pi^* 2 \rho_y^1}{9} \frac{\sigma^* 2 \rho_z^0}{10}$$


Q. 66 Which of the following molecular orbitals has maximum number of nodal planes?

(a)
$$\sigma^* 1s$$


(c)
$$\pi 2p_x$$

(d)
$$\pi^{*}2p_{y}$$

Ans. (d) Nodal plane are $\sigma^* 1s = 1$, $\sigma^* 2p_z = 1$, $\pi 2p_x = 1$, $\pi^* 2p_y = 2$

The molecular orbitals whose number of nodal planes are as

Q. 67 Which of the following pair is expected to have the same bond order?

(a)
$$O_2$$
, N_2

(b)
$$O_2^+$$
, N_2^-

(c)
$$O_2^-$$
, N_2^+

(d)
$$O_2^-$$
, N_2^-

Ans. (b) On the basec of molecular orbetal therory we can calculate bond order of molecules ions as

$$BO = \frac{1}{2}(N_b - N_a)$$

Molecular orbital electronic configuration (MOEC) of N_2 is

$$\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \pi 2p_x^2 \sim \pi 2p_y^2, \sigma 2p_x^2$$

Bond order of $N_2 = \frac{1}{2}(10 - 4) = 3$

$$\mathsf{MOEC} \; \mathsf{of} \; \mathsf{N_2}^+ = \; \sigma \mathsf{1s}^2, \\ \sigma^* \; \mathsf{1s}^2, \\ \sigma \mathsf{2s}^2, \\ \sigma^* \; \mathsf{2s}^2, \\ \pi \mathsf{2} \; \rho_x^2 \underline{\hspace{0.5cm}} \pi \mathsf{2} \; \rho_y^2, \\ \sigma \mathsf{2p}_2 \; \mathsf{2p}_$$

BO of
$$N_2^+ = \frac{1}{2}(9-4) = 2.5$$

MOEC of
$$N_2^- = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^* 2p_x^2 \pi^2 p_y^2$, $\sigma^2 p_z^2$, $\sigma^* 2p_x^1 \pi^* 2p_y^2$

BO of
$$N_2^- = \frac{1}{2}(10 - 5) = 2.5$$

$$\mathsf{MOEC} \; \mathsf{of} \; \mathsf{O_2} \; = \sigma 1 \mathsf{s}^2, \sigma^* \; 1 \mathsf{s}^2, \sigma 2 \mathsf{s}^2, \sigma^* \; 2 \mathsf{s}^2, \sigma 2 \rho_z^2, \pi^2 \rho_x^2 \underline{=} \pi^2 \rho_y^2, \pi^* \; 2 \rho_x^1 \underline{=} \pi^* \; 2 \rho_y^1$$

BO of
$$O_2 = \frac{1}{2}(10 - 6) = 2$$

MOEC of
$$O_2^- = \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2\rho_z^2$, $\pi 2\rho_x^2 \pi 2\rho_y^2$, $\pi^* 2\rho_x^2 \pi^* 2\rho_y^2$
BO of $O_2^- = \frac{1}{2}(10-7) = 1.5$
MOEC of $O_2^+ = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2\rho_z^2$, $\pi 2\rho_x^2 \pi 2\rho_y^2$, $\pi^* 2\rho_x^2 \pi^* 2\rho_y^2$
BO of $O_2^+ = \frac{1}{2}(10-5) = 2.5$

- (a) Bond order of O₂ and N₂ are 2 and 3, respectively.
- **(b)** Bond order of both O_2^+ and N_2^- are 2.5.
- (c) Bond order of O_2^- and N_2^+ are 1.5 and 2.5, respectively.
- (d) Bond order of O_2^- and N_2^- are 1.5 and 2.5 respectively.
- **Q. 68** In which of the following molecules, $\sigma 2p_z$ molecular orbital is filled after $\pi 2p_x$ and $\pi 2p_y$ molecular orbitals?
 - (a) O_2

(b) Ne₂

(c) N_2

 $(d) F_2$

Ans. (c) Total number of electrons present in N_2 molecule is 14.

The electronic configuration of N₂ molecule will be

$$\sigma^{1} s^{2} \sigma^{*} 1 s^{2} \sigma^{2} s^{2} \sigma^{*} 2 s^{2} \pi^{2} p_{x}^{2} \approx \pi^{2} p_{y}^{2} \sigma^{2} p_{z}^{2}$$

Note The increasing order of energies of various molecular orbitals for O_2 and F_2 is given below $\sigma 1s < \sigma^* 1s < \sigma^2 s < \sigma^2 s < \sigma^2 p_z < (\pi^2 p_x \approx \pi^2 p_y) < (\pi^* 2 p_x \approx \pi^* 2 p_y) < \sigma^* 2 p_z$

However, this sequence of energy levels of MO is not correct for the remaining molecules such as Li_2 , Be_2 , Be_2 , C_2 and N_2 . For these molecules, the increasing order of energies of various MO is

$$\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x \approx \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x \approx \pi^* 2p_y) < \sigma^* 2p_z$$