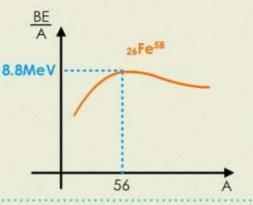


MASS DEFECT

Mass Defect = Mexpected - Mobserved


 $\Delta m = [Zm_p + (A - Z)m_n - [M_{atom} - Zm_e]$

BINDING ENERGY

It is the minimum energy required to break the nucleus into its constituent particles.

Binding Energy (B.E.) = $\Delta mc^2 = \Delta m \times 931 \text{ MeV}$

- Binding energy per nucleon is more for medium nuclei than for heavy nuclei. Hence, medium nuclei are highly stable.
- The heavier nuclei being unstable have tendency to split into medium nuclei. This process is called Fission.
- The Lighter nuclei being unstable have tendency to fuse into a medium nucleus. This process is called Fusion.

RADIOACTIVITY COMMON

- It was discovered by Henry Becquerel.
- Spontaneous emission of radiations (α, β, γ) from unstable nucleus is called radioactivity. Substances which show radioactivity are known as radioactive substance.
- In radioactive decay, an unstable nucleus emits α particle or β particle. After emission of α or β particle the remaining nucleus may emit γ particle, and convert into a more stable nucleus.

α- particle

It is a doubly charged helium nucleus. It contains two protons and two neutrons.

Mass of α - particle = Mass of ₂H e⁴ atom - 2m_e = 4 m_p

Charge of α - particle = + 2e

β- particle

β- (electron)

Mass = me : Charge = - e

β+ (positron)

Mass = m_e: Charge = + e
positron is an antiparticle of electron.

γ- particle

They are energetic photons of energy of the order of MeV and having zero rest mass.

RADIOACTIVE DECAY (DISPLACEMENT LAW)

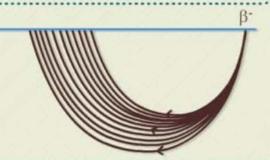
1 α - DECAY

$$_{7}X^{A} \rightarrow _{7-2}Y^{A-4} + _{2}He^{4} + Q$$

Q value is definied as energy released during the decay process.

Q value = rest mass energy of reactants - rest mass energy of products

Let, $M_x = \text{mass of atom }_z X^A$, $M_y = \text{mass of atom }_{z-2} Y^{A-4}$, $M_{He} = \text{mass of atom }_2 He^4$


Q value =
$$[M_x - M_y - M_{He}]C^2$$

2 β- - DECAY

$$_{z}X^{A} \rightarrow _{z+1}Y^{A} + _{-1}e^{0} + Q$$

$$T_e = \frac{m_y}{m_e + m_y} Q_x T_y = \frac{m_e}{m_e + m_y} Q_x$$

Q value =
$$[M_x - {(M_Y - m_e) + m_e}] c^2 = [M_x - M_y] c^2$$

3 β+ - DECAY

$$_{7}X^{A} \rightarrow _{7-1}Y^{A} + _{+1}e^{0} + \nu + Q$$

Q value =
$$[M_x - {(M_Y + m_e) + m_e}] c^2 = [M_x - M_y - 2M_e]c^2$$

RADIOACTIVE DECAY: STATISTICAL LAW

- Rate of radioactive decay is directly proportional to N
- where N = number of active nuclei.
- Rate of radioactive decay of A = $\frac{-dN}{dt}$ = λN
- (a) where λ = decay constant of the radioactive substance.
- Number of nuclei decayed (i.e., the number of nuclei of B formed)

$$N = N_0 (1 - e^{-\lambda t})$$

1 HALF LIFE (T_{1/2})

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

2 ACTIVITY

Activity is defined as the rate of radioactive decay of nuclei

$$A = A_0 e^{-\lambda t}$$

3 AVERAGE LIFE

$$T_{avg} = \frac{\text{sum of ages of all the nuclei}}{N_0}$$

$$\frac{\int\limits_{0}^{\infty} \lambda \, N_0 \, e^{-\lambda t} \, dt \, .t}{N_0} = \frac{1}{\lambda}$$

