SL. NO.	quantities	FORMULA (RELATIONS)	Electrostatics
1	Quantisation of Elect. Charges (Q) on a body	Q = n.e	n is Integral Number, e is charge on electron 1.6 X 10 ⁻¹⁹ C
2	Electrostatic force constant	1/(4π∈ ₀)	value : 9 x 10 ⁹ Nm ² C ⁻²
3	Permittivity	€0	8.85 x 10 ⁻¹² C ² N ⁻¹ m ⁻²
4	Coulumb's Law	$F=q_1q_2/4\pi\epsilon_0r^2$	q_1 and q_2 are two charges placed at distance r.
5	Forces on two charges	F ₁₂ = - F ₂₁	Direction of F is along r.
6	Dielectric Constant	$K = \varepsilon/\varepsilon_0 = \varepsilon_r$	ϵ is absolute permittivity of medium, ϵ_0 is permittivity of free space, ϵ_r is relative permittivity.
7	Electric Field at a point	E = F/q	F is force experienced by the test charge q at a point. E is called field intensity at that point
	Force with respect to field	F = q.E	
8	Electric field due to source charge Q at distance r	$E = Q/(4\pi\epsilon_0 r^2)$	Direction of E is along r.
9	Electric Field due to dipole on a point on axial line	$E = 2P/(4\pi\epsilon_0 r^3)$	P is dipole moment, r is distance from centre of dipole on axial line.
10	Electric Field due to dipole on a point on equitorial line	$E = P/(4\pi\epsilon_0 r^3)$	P is dipole moment, r is distance from centre of dipole on equitorial line.
11	Electric Field due to dipole at any general point, at distance r making angle θ with P -	$E = PVI(3\cos^2\theta + 1)/4\pi\epsilon_0 r^3$	r is distance of point from midpoint of dipole, θ is angle between direction of r and dipole moment P
	E makes angle α with r then	$\tan \alpha = \frac{1}{2} \tan \theta$	α is angle between resultant field and direction of r, θ is angle between r and P
12	E at any point on the axis of a uniformly charged ring at distance r	$qr/4\pi\epsilon_0(r^2+a^2)^{3/2}$	
13	Torque on a dipole kept in Electric Field	τ = PESinθ or $r = Px E$	P is dipole moment, E is electric field, Direction of Torque is normal to plain containing P and E
14	Work done for rotating dipole by angle $\boldsymbol{\theta}$	W = PE(1- Cosθ)	P is dipole moment. E is electric field
15	Potential Energy of dipole in equilibrium condition when P is along E.	U = - PE	P is dipole moment. E is electric field
16	Potential energy of dipole at 90 degree to E	Zero	
17	Potential energy of dipole at 180 °	U = + PE	P is dipole moment. E is electric field
18	Electric Flux Φε	φε= E.S = ∫E.ds	
19	gauss theorem	$\phi_{E} = \emptyset [E.ds] = q/\epsilon_{o}$	Flux linked to a closed surface is q/ϵ_0 times the charge enclosed in it.
20	Field due to infinite long straight charged conductor	λ/2πε _o r	λ is linear charge density in the conductor, r is the perpendicular distance.
21	Electric field due to infinite plane sheet of charge	σ /2€ο	σ is areal charge density. Independent of distance
22	Within two parallal sheets of opposite charges	σ /ϵο	Outside, field is zero
23	Within two parallal sheets of similar charges	zero	Outside, field is σ/ε_0
24	Electric field due to spherical shell, out side shell	$E=q/(4\pi\epsilon_0 r^2)$	q is charge on shell, r distance from centre.

25	Electric field on the surface of spherical shell.	$E=q/(4\pi\epsilon_0R^2)$	R is radius of shell
26	Electric field inside spherical shell.	Zero	
27	Electric field inside the sphere of charge distributed uniformly all over the volume.	E = rp/3€	r is radius of sphere, ρ is volumetric charge density, is permittivity of medium
28	Potential due to charge Q at distance r	V = Q/(4πε _o r)	Potential is characteristic of that location
29	Potential Energy with charge q kept at a point with potential V	$U = qV = Qq/(4\pi\epsilon_0 r)$	Potential Energy is that of the system containing Q and q.
30	Work done for in moving a charge q through a potential difference of V	$W = q(V_2 - V_1)$	V = (v ₂ -v ₁)
	Energy of system of two charges	$U = q_1q_2/(4\pi\epsilon_0 r)$	
31	Relation of E and V	E = - dv/dr	dv is potential difference between two points at distance r where r and E are in the same direction.
32	Relation of E and V and θ	E Cosθ = - dv/dr	where θ is angle between dr and E
33	Potential at infinity / in earth	Zero	
34	Electric Potential due to dipole on a point on axial line	$V = P/(4\pi\epsilon_0 r^2)$	P is dipole momentum, r is distance from centre of dipole
35	Electric Potential due to dipole on a point on equitorial line	Zero	
36	Electric Potential due to dipole at any general point,	$V = P \cos\theta / 4\pi\epsilon_0 (r^2 - a^2 \cos^2\theta)$	P is dipole momentum, r is distance from centre of dipole, a is half length of dipole, is angle between r and P
37	Work done in moving a charge between two points of an equipotential surface	Zero	
38	Capacitance of a spherical conductor	4πε ₀ R	R is radius of the sphere
39	Capacitance of a parallal plate capacitor	ε _o kA/d	A is area of each plate, d is distance between them, k is dilectric constant of the medium between plates.
40	Dielectric Constant	k = C / C ₀	Cis capacitance with medium within plates, and C_0 is capacitance in free space.
41	Capacitance of a spherical capacitor.	$C = 4\pi\epsilon_0 r_a r_b / (r_a - r_b)$	ra and rb are radius of internal and external spherical shells
42	Equivalent capacitance for Capacitors in parallal	C = c ₁ + c ₂ +c ₃	Cis equivalent capacitance, c ₁ , c ₂ are capacitnce of the capacitors joint together.
43	Equivalent capacitance for Capacitors in series	1/C = 1/c ₁ + 1/c ₂ + 1/c ₃	
44	Charge, capacitance, Potential Difference	C = q/V	q ischarge on the plate of capacitor and V is Potential Difference between the plates.
45	Energy stored in capacitor	½cv², ½qv, ½q²/c	q is charge, c is capacitance, v is Pot. Difference
46	Common Potential	V=C ₁ V ₁ +C ₂ V ₂)/C ₁ +C ₂	
47	Energy loss in connecting	$\frac{1}{2} \frac{C_1 C_2}{C^1 + C_2} (V1 - V2)^2$	c_1 at v_1 is connected to c_2 at v_2
48	C with dielectric slab inserted	ε _o kA/d-t(1-1/k)	t is thickness of dielectric slab of constant k,
49	C with metal plate inserted	ε _o kA/(d-t)	t is thickness of metal plate inserted,
50	Force of attraction between plates	$\frac{1}{2}q^{2}/\epsilon_{0}A$, $\frac{1}{2}\epsilon_{0}E^{2}A$	q is charge on plate, A is area, E Elect. Field.

DYNAMICS AND KINEMATICS

$$x = x_0 + \mathcal{V}_0 t + \frac{1}{2} a t^2$$

$$F_s = -kx$$

$$\vec{F}_{net} = m\vec{a}$$

$$\vec{F}_{nct} = m\vec{a} \qquad T = 2\pi \sqrt{\frac{m}{k}}$$

$$\vec{F}_{net} = \frac{d\vec{p}}{dt}$$

$$f_{k} = \mu_{k} N \qquad T = 2\pi \sqrt{\frac{\ell}{g}} \qquad KE = \frac{1}{2} m v^{2}$$

$$f_s \leq \mu_s N$$

$$f_s \le \mu_s N$$

$$a_c = \frac{v^2}{r} = \omega^2 r$$

$$T = 2\pi \sqrt{\frac{I}{mgr}}$$

WORK, ENERGY, POWER, AND MOMENTUM

$$W = \int \vec{F} \cdot d\vec{s} \qquad P = \frac{dW}{dt}$$

$$P = \frac{dW}{dt}$$

$$U_s = \frac{1}{2}kx^2 \qquad \qquad \vec{p} = m\vec{v}$$

$$\vec{p} = m\vec{v}$$

$$U_g = mgh$$

$$F_x = -\frac{dU}{dx}$$

$$KE = \frac{1}{2}mv$$

$$\vec{r}_{cm} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}, \, \vec{r}_{cm} = \frac{\int \vec{r} dm}{\int dm}$$

ROTATIONAL MOTION

$$s = r\theta$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\vec{\tau} = \vec{r} \times \vec{F}, \ \vec{\tau} = \frac{d\vec{L}}{dt}$$

$$\vec{L} = \vec{r} \times \vec{p}, \ \vec{L} = I\vec{\omega}$$

$$I_{mor} = MR^2$$

$$I_{disc} = \frac{1}{2}MR^2$$

$$I_{sphere} = \frac{2}{5}MR^2$$

UNIVERSAL GRAVITATION

$$F = \frac{Gm_1m_2}{r^2}$$

$$T^2 = \frac{4\pi^2}{GM}r^3$$

$$U_g = -\frac{Gm_1m_2}{}$$

MAGNETISM

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

$$\vec{F} = a\vec{v} \times \vec{B}$$

$$\vec{F} = i\vec{l} \times \vec{B}$$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\,d\vec{s} \times \hat{r}}{r^2}$$

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

THERMODYNAMICS

$$\Delta L = \alpha L_o \Delta T$$

$$W = \int p dV$$

$$Q = mc\Delta T$$

$$\Delta S = \int \frac{dQ}{T}$$

$$Q = Lm$$

$$\varepsilon \le 1 - \frac{T_L}{T_L}$$

$$dE = dO - dW$$

pV = nRT = NkT

$$dE = dQ - dW \qquad \frac{dQ}{dt} = kA \frac{T_H - T_C}{L}$$

$$e = \frac{W_{\text{out}}}{Q_{\text{in}}}$$

$$\frac{Q_C}{W} = \text{COP}$$

ELECTROSTATICS

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$

$$\Delta V = -\int \vec{E} \cdot d\vec{s}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E} = \frac{\vec{F}}{a} \qquad \Phi_E = \int \vec{E} \cdot d\vec{A}$$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

$$C = \frac{Q}{V}$$

$$U = qV$$

$$C = \frac{\kappa \varepsilon_0 A}{d}$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$U = \frac{1}{2}CV^2$$

WAVES

$$v = f\lambda$$

$$y = A\sin(kx - \omega t)$$

$$k = \frac{2\pi}{\lambda}$$

$$\nu = \sqrt{\frac{T}{u}}$$

$$f' = f \frac{v \pm v_D}{v \mp v_s}$$

$$I = \frac{P}{A}$$

$$\beta = (10 \text{ dB}) \log_{10} \frac{I}{I_0}$$

CURRENTS

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

$$J = n |q| v_d$$

$$E = \rho J$$

$$R = \frac{\rho \ell}{A}$$

MECHANICS OF FLUIDS

$$p = p_0 + \rho g h$$

$$\rho vA = constant$$

$$p + \frac{1}{2}\rho v^2 + \rho g h = \text{constant}$$