

ELECTRIC FIELD

Electric Field due to Point Charge

Vector Form
$$\vec{E} = \frac{kq}{x^3} \cdot \vec{x}$$

$$k = \frac{1}{4\pi\epsilon_0}$$

q = Charge ; x = Distance

If a charge qois placed at a point in electric field, it experiences a net force F on it, then electric field strength at that point can be $\vec{E} = \frac{\vec{F}}{a}$

ELECTRIC FIELD DUE TO A UNIFORMLY CHARGED ROD

PARALLEL

$$E_{||} = \frac{k \lambda}{r} (\cos \theta_z - \cos \theta_z)$$

PERPENDICULAR

$$E_{\perp} = \frac{k \lambda}{r} (\sin \theta_z - \sin \theta_i)$$

ELECTRIC FIELD DUE TO INFINITE WIRE (\$2>r)

Since
$$\ell >> r \implies \theta_1 = \theta_2 = 90^\circ$$

PERPENDICULAR

$$E_{\perp} = \frac{k\lambda}{r} \text{ (sin90°+ sin90°)} \Longrightarrow \left[E_{\perp} = \frac{2k\lambda}{r}\right]$$

PARALLEL

$$E_{||} = \frac{k\lambda}{r} (\cos 90^{\circ} - \cos 90^{\circ}) \implies \boxed{E_{||} = 0}$$

At P,
$$E_{net} = E_{\perp} + E_{\parallel}$$
 $E_{net} = \frac{2k\lambda}{r}$

ELECTRIC FIELD DUE TO SEMI INFINITE WIRE

$$\theta_1 = 90^\circ$$
 , $\theta_2 = 0^\circ$

PERPENDICULAR

$$E_{\perp} = \frac{k\lambda}{r} (\sin 90^{\circ} + \sin 0^{\circ}) = \frac{k\lambda}{r}$$

PARALLEL

$$E_{\parallel} = \frac{k\lambda}{r} (\cos 0^{\circ} - \cos 90^{\circ}) = \frac{k\lambda}{r}$$

ELECTRIC FIELD DUE TO UNIFORMLY CHARGED RING

$$E = \frac{kQ x}{(R^2 + x^2)^{3/2}}$$

For maxima,
$$x = \pm \frac{R}{\sqrt{2}}$$

$$E_{max} = \pm \frac{2}{3\sqrt{3}} \cdot \frac{kQ}{R^2}$$

ELECTRIC FIELD ON THE AXIS OF DISC

$$E = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right]$$
 [along the axis]

If
$$x >> R$$

If
$$x << R$$

$$\mathbf{E} = \frac{\sigma}{2\varepsilon_0} (1 - 0) = \frac{\sigma}{2\varepsilon_0}$$

ELECTRIC FIELD STRENGTH

Gauss's Law

$$\oint_{M} \vec{E} \cdot d\vec{S} = \frac{q_1 + q_3 - q_3}{\epsilon_0}$$

Electric Field due to a Point Charge

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2}$$

Electric Field Strength due to a Long Charged Wire

Electric Field Strength due to Non-Conducting Uniformly Charged Sheet

Electric Field Strength due to Charged Conducting Sheet

Electric Field Strength due to a Long Uniformly Charged Cylinder

Uniformly Charged Non - Conducting Cylinder

ELECTRIC POTENTIAL

POTENTIAL DUE TO CONCENTRIC SPHERES

At a point
$$r > c$$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q_1 - q_2 + q_3}{r}$$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q_1 - q_2 + q_3}{r} \qquad V = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r} - \frac{1}{4\pi\epsilon_0} \frac{q_2}{b} + \frac{1}{4\pi\epsilon_0} \frac{q_3}{c}$$

At a point
$$b < r < c$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q_1 - q_2}{r} + \frac{1}{4\pi\varepsilon_0} \frac{q_3}{c} \qquad V = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_1}{a} - \frac{q_2}{b} + \frac{q_3}{c} \right]$$

$$V = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1}{a} - \frac{q_2}{b} + \frac{q_3}{c} \right]$$

BETWEEN TWO CONCENTRIC SPHERES WHEN ONE OF THEM IS EARTHED

$$V_{in} = \frac{1}{4\pi\epsilon_0} \left[-\frac{q_1}{a} + \frac{q_2}{b} \right]$$

$$\frac{q_2}{c} = q_1 \left| \frac{1}{a} - \frac{1}{b} \right| \dots (i)$$
 $q_1 + q_2 = q \dots (ii)$

$$V_{in} = \frac{1}{4\pi\epsilon_{D}} \left[-\frac{q_{1}}{a} + \frac{q_{2}}{b} \right] \quad V_{out} = \frac{1}{4\pi\epsilon_{D}} \left[-\frac{q_{1}}{b} + \frac{q_{2}}{b} \right]$$

Solving (i) and (ii) we can get q, and q2

WEEN TWO CONCENTRIC UNIFORMLY CHARGED METALLIC SPHERES

$$V_{in} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{a} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{b}$$

$$V_{in} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{a} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{b} \qquad V_{out} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{b} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{b}$$

$$\Delta V = V_{in} - V_{out} \implies \Delta V = \frac{q_1}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$$

TOTAL ELECTROSTATIC ENERGY OF A SYSTEM OF CHARGES

$$U = \frac{3KQ_{1}^{2}}{5R_{1}} + \frac{3KQ_{2}^{2}}{5R_{2}} + \frac{KQ_{1}Q_{2}}{r}$$

ELECTRIC DIPOLE

ELECTRIC DIPOLE

$$\vec{p} = q.2\vec{a}$$

SI unit : Coulomb - meter

It is a vector quantity

Direction of dipole moments (p) is from negative charge to positive charge

ELECTRIC FIELD ON AXIAL LINE OF AN ELECTRIC DIPOLE

$$E = \frac{1}{4\pi\epsilon_0} \frac{2qa}{(r^2-a^2)^2}$$

For a<<r

$$\vec{E}_{axial} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$$

Eaxial is along the direction of dipole moment

ELECTRIC FIELD ON EQUATORIAL LINE OF AN ELECTRIC DIPOLE

$$E = -\frac{1}{4\pi\epsilon_0} \cdot \frac{q.2a}{(r^2-a^2)^{3/2}}$$

$$\vec{E}_{equiatoral} = -\frac{1}{4\pi\epsilon_0} \cdot \frac{\vec{p}}{r^3}$$

E_{equatorial} is along the opposite direction of dipole moment

DIPOLE IN A UNIFORM EXTERNAL ELECTRIC FIELD

VECTOR FORM

$$\vec{\tau} = \vec{p} \cdot \vec{E}$$

ELECTRIC FIELD AT A GENERAL POINT DUE TO A DIPOLE

$$E_{net} = \frac{kP}{r^3} \sqrt{1 + 3\cos^2 \theta} , \tan \alpha = \frac{\tan \theta}{2} ; k = \frac{1}{4\pi\epsilon_0}$$

ELECTRIC POTENTIAL DUE TO A DIPOLE

POTENTIAL AT 'P' DUE TO DIPOLE,
$$V_p = \frac{2kP \cos \theta}{r^2}$$

AT AN AXIAL POINT,
$$V_{net} = \frac{kp}{r^2}$$
 (As P = q.2a)

AT PERPENDICULAR BI-SECTOR, $V_{net} = 0$

ELECTRIC FLUX

Electric Field Strength in terms of Electric Flux

Electric Flux in Non-uniform Electric Field

Electric Flux through a Circular Disc

$$\phi = \frac{q}{\epsilon_0} \left[1 - \frac{\ell}{\sqrt{R^2 + x^2}} \right]$$

Electric Flux through the Lateral Surface of a Cylinder due to a Point Charge

$$\phi = \frac{q}{\epsilon_0} \cdot \frac{\ell}{\sqrt{R^2 + x^2}}$$

Electric Flux produced by a Point Charge

Flux Calculation in the Region of Varying Electric Field

$$\phi_{in} = E_0 (2a)^2 \cdot a^2 = 4E_0 a^4$$

$$\phi_{out} = E_0 (3a)^2 \cdot a^2 = 9E_0 a^4$$

$$\phi_{net} = 5E_0 a^4$$

$$\phi_{in} = 5E_0 a^4$$

$$\phi_{in} = 5E_0 a^4$$